Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Insects ; 15(3)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38535384

RESUMO

In Germany, the phloem-sucking planthopper Pentastiridius leporinus (Hemiptera: Cixiidae) currently represents the epidemiological driver for the spread of the syndrome "Basses Richesses" in sugar beets, which results in a reduced sugar content and an economic loss for the farmers. This disease is associated with the γ-proteobacterium 'Candidatus Arsenophonus phytopathogenicus' and the Stolbur phytoplasma 'Candidatus Phytoplasma solani'. Recently, P. leporinus was found in potato fields in Germany and is associated with Stolbur-like symptoms in this crop. In this study, we confirmed that the vector completes its lifecycle on sugar beets as well as on potatoes when reared under controlled conditions. Transmission experiments with adults of this vector combined with molecular analyses showed, for the first time, that both pathogens are transmitted by this vector to potatoes. For an accurate assessment of the Ca. P. solani and Ca. A. phytopathogenicus titers in the vector and host plants, gBlocks derived from the hsp20- and 16S rRNA genes were employed, respectively. For Ca. P. solani, the limit of detection was determined in potato and sugar beet material. The results of this study will further the research on the epidemiology of the syndrome "Basses Richesses" and "Stolbur" diseases and the response of host plants and vector insects to both pathogens.

2.
PLoS Pathog ; 17(3): e1009459, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33765095

RESUMO

The host-pathogen combinations-Malus domestica (apple)/`Candidatus Phytoplasma mali´, Prunus persica (peach)/`Ca. P. prunorum´ and Pyrus communis (pear)/`Ca. P. pyri´ show different courses of diseases although the phytoplasma strains belong to the same 16SrX group. While infected apple trees can survive for decades, peach and pear trees die within weeks to few years. To this date, neither morphological nor physiological differences caused by phytoplasmas have been studied in these host plants. In this study, phytoplasma-induced morphological changes of the vascular system as well as physiological changes of the phloem sap and leaf phytohormones were analysed and compared with non-infected plants. Unlike peach and pear, infected apple trees showed substantial reductions in leaf and vascular area, affecting phloem mass flow. In contrast, in infected pear mass flow and physicochemical characteristics of phloem sap increased. Additionally, an increased callose deposition was detected in pear and peach leaves but not in apple trees in response to phytoplasma infection. The phytohormone levels in pear were not affected by an infection, while in apple and peach trees concentrations of defence- and stress-related phytohormones were increased. Compared with peach and pear trees, data from apple suggest that the long-lasting morphological adaptations in the vascular system, which likely cause reduced sap flow, triggers the ability of apple trees to survive phytoplasma infection. Some phytohormone-mediated defences might support the tolerance.


Assuntos
Produtos Agrícolas/microbiologia , Malus/imunologia , Doenças por Fitoplasmas/imunologia , Imunidade Vegetal/fisiologia , Prunus persica/imunologia , Produtos Agrícolas/imunologia , Malus/microbiologia , Phytoplasma/imunologia , Folhas de Planta/microbiologia , Feixe Vascular de Plantas/microbiologia , Prunus persica/microbiologia , RNA Ribossômico 16S
3.
Virology ; 529: 81-90, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30684693

RESUMO

One geminiviral gene encodes the capsid protein (CP), which can appear as several bands after electrophoresis depending on virus and plant. African cassava mosaic virus-Nigeria CP in Nicotiana benthamiana, however, yielded one band (~ 30 kDa) in total protein extracts and purified virions, although its expression in yeast yielded two bands (~ 30, 32 kDa). Mass spectrometry of the complete protein and its tryptic fragments from virions is consistent with a cleaved start M1, acetylated S2, and partial phosphorylation at T12, S25 and S62. Mutants for additional potentially modified sites (N223A; C235A) were fully infectious and formed geminiparticles. Separation in triton acetic acid urea gels confirmed charge changes of the CP between plants and yeast indicating differential phosphorylation. If the CP gene alone was expressed in plants, multiple bands were observed like in yeast. A high turnover rate indicates that post-translational modifications promote CP decay probably via the ubiquitin-triggered proteasomal pathway.


Assuntos
Begomovirus/fisiologia , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Replicação Viral , Sequência de Aminoácidos , DNA Viral , Modelos Moleculares , Fosforilação , Doenças das Plantas/virologia , Conformação Proteica , Isoformas de Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA