Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 22040, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328503

RESUMO

Organs throughout the body develop both asymmetrically and symmetrically. Here, we assess how symmetrical teeth in reptiles can be created from asymmetrical tooth germs. Teeth of lepidosaurian reptiles are mostly anchored to the jaw bones by pleurodont ankylosis, where the tooth is held in place on the labial side only. Pleurodont teeth are characterized by significantly asymmetrical development of the labial and lingual sides of the cervical loop, which later leads to uneven deposition of hard tissue. On the other hand, acrodont teeth found in lizards of the Acrodonta clade (i.e. agamas, chameleons) are symmetrically ankylosed to the jaw bone. Here, we have focused on the formation of the symmetrical acrodont dentition of the veiled chameleon (Chamaeleo calyptratus). Intriguingly, our results revealed distinct asymmetries in morphology of the labial and lingual sides of the cervical loop during early developmental stages, both at the gross and ultrastructural level, with specific patterns of cell proliferation and stem cell marker expression. Asymmetrical expression of ST14 was also observed, with a positive domain on the lingual side of the cervical loop overlapping with the SOX2 domain. In contrast, micro-CT analysis of hard tissues revealed that deposition of dentin and enamel was largely symmetrical at the mineralization stage, highlighting the difference between cervical loop morphology during early development and differentiation of odontoblasts throughout later odontogenesis. In conclusion, the early asymmetrical development of the enamel organ seems to be a plesiomorphic character for all squamate reptiles, while symmetrical and precisely orchestrated deposition of hard tissue during tooth formation in acrodont dentitions probably represents a novelty in the Acrodonta clade.


Assuntos
Desenvolvimento Ósseo/fisiologia , Arcada Osseodentária/fisiologia , Lagartos , Odontogênese/fisiologia , Dente/fisiologia , Animais , Lagartos/anatomia & histologia , Lagartos/fisiologia
2.
J Microsc ; 273(3): 169-177, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30467862

RESUMO

This study presents an X-ray computed nanotomography (nano-CT) based, high-resolution imaging technique. Thanks to a voxel resolution of 540 nm, this novel technique is suitable for observing the 3D morphology of soft biopolymeric scaffolds seeded with stem cells. A sample of highly porous collagen scaffold seeded with contrasted mesenchymal stem cells (MSC) was investigated by using lab-based nano-CT. The whole volume of the sample was analysed without its destruction. To evaluate the potential of nano-CT, a comparison measurement was done using a standard microscopy technique. Scanning electron microscopy (SEM) combined with energy dispersive X-ray analysis (EDX) established an extension and local accumulation of the contrasting agent - heavy metallic osmium tetroxide. The presented imaging technique is novel as it will help to understand better the behaviour of cells while interacting with three-dimensional biomaterials. This is crucial for both experimental and clinical tissue engineering applications in order to limit the risk of uncontrolled cell growth, and potentially tumour formation. LAY DESCRIPTION: Biomaterials play a crucial role in tissue engineering by serving as 3D scaffolds for cellular attachment, proliferation, and in growth ultimately leading to new tissue formation. Cell morphology and proliferation inside the 3D scaffold are necessary to know for assessing cell viability. However, these studies are usually negatively affected by the limitations of imaging techniques. We demonstrate that X-ray computed nanotomography (nano-CT), based on high-resolution imaging technique providing voxel resolution of 540 nm, is a suitable method for observing the 3D morphology of soft biopolymeric scaffolds seeded with stem cells. A sample of highly porous collagen scaffold seeded with contrasted mesenchymal stem cells (MSC) was investigated by using a lab-based nano-CT. The whole volume of the sample was analysed without its destruction. To evaluate the potential of nano-CT, a comparison measurement was done using a standard microscopy technique. Scanning electron microscopy in a combination with energy dispersive X-ray analysis established an extension and local accumulation of the contrasting agent - heavy metallic osmium tetroxide. The presented imaging technique is novel as it will help to understand better the behaviour of cells while interacting with three-dimensional biomaterials. This is crucial for both experimental and clinical tissue engineering applications in order to limit the risk of uncontrolled cell growth, and potentially tumour formation.


Assuntos
Imageamento Tridimensional/métodos , Células-Tronco Mesenquimais/ultraestrutura , Alicerces Teciduais , Microtomografia por Raio-X/métodos , Animais , Materiais Biocompatíveis , Técnicas de Cultura de Células , Sobrevivência Celular , Células Cultivadas , Colágeno/química , Microscopia Eletrônica de Varredura/métodos , Porosidade , Coelhos
3.
J Dent Res ; 97(1): 108-117, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28954202

RESUMO

A broad spectrum of human diseases called ciliopathies is caused by defective primary cilia morphology or signal transduction. The primary cilium is a solitary organelle that responds to mechanical and chemical stimuli from extracellular and intracellular environments. Transmembrane protein 107 (TMEM107) is localized in the primary cilium and is enriched at the transition zone where it acts to regulate protein content of the cilium. Mutations in TMEM107 were previously connected with oral-facial-digital syndrome, Meckel-Gruber syndrome, and Joubert syndrome exhibiting a range of ciliopathic defects. Here, we analyze a role of Tmem107 in craniofacial development with special focus on palate formation, using mouse embryos with a complete knockout of Tmem107. Tmem107-/- mice were affected by a broad spectrum of craniofacial defects, including shorter snout, expansion of the facial midline, cleft lip, extensive exencephaly, and microphthalmia or anophthalmia. External abnormalities were accompanied by defects in skeletal structures, including ossification delay in several membranous bones and enlargement of the nasal septum or defects in vomeronasal cartilage. Alteration in palatal shelves growth resulted in clefting of the secondary palate. Palatal defects were caused by increased mesenchymal proliferation leading to early overgrowth of palatal shelves followed by defects in their horizontalization. Moreover, the expression of epithelial stemness marker SOX2 was altered in the palatal shelves of Tmem107-/- animals, and differences in mesenchymal SOX9 expression demonstrated the enhancement of neural crest migration. Detailed analysis of primary cilia revealed region-specific changes in ciliary morphology accompanied by alteration of acetylated tubulin and IFT88 expression. Moreover, Shh and Gli1 expression was increased in Tmem107-/- animals as shown by in situ hybridization. Thus, TMEM107 is essential for proper head development, and defective TMEM107 function leads to ciliary morphology disruptions in a region-specific manner, which may explain the complex mutant phenotype.


Assuntos
Desenvolvimento Maxilofacial/genética , Proteínas de Membrana/fisiologia , Crânio/crescimento & desenvolvimento , Animais , Cílios , Fenda Labial/genética , Anormalidades Craniofaciais/genética , Ossos Faciais/anormalidades , Ossos Faciais/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Defeitos do Tubo Neural/genética , Palato/anormalidades , Fatores de Transcrição SOX/metabolismo
4.
Soft Matter ; 14(2): 228-238, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29227501

RESUMO

In this study, the potential of highly porous hydrogels based on biodegradable synthetic poly(α-amino acids) to support proliferation and chondrogenesis of human dental pulp stem cells (hDPSCs) was investigated. Covalently crosslinked gels with permanent pores were formed under cryogenic conditions by free-radical copolymerization of poly[N5-(2-hydroxyethyl)-l-glutamine-stat-N5-(2-methacryloyl-oxy-ethyl)-l-glutamine] (PHEG-MA) with 2-hydroxyethyl methacrylate (HEMA) and N-propargyl methacrylamide (PrMAAm) as minor co-monomers. PrMAAm provided alkyne groups for modifying the gels with cell-supporting moieties (RGDS peptides) by the azide-alkyne "click"-reaction. Two types of gels with different compressive moduli were prepared. Each type was modified with two different concentrations of RGDS peptide. X-ray computed nanotomography (nanoCT) was used to visualize and analyze the 3D-structure of the cryogels. It was shown that modifying the PHEG-MA cryogels within the range of RGDS concentrations examined here had a positive effect on the proliferation of hDPSCs. Immunofluorescence staining for collagen type 2 and aggrecan proved that there was differentiation of hDPSCs into chondrocytes.

5.
Rev Sci Instrum ; 88(3): 033707, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28372440

RESUMO

At present, the automotive industry, along with other industries, has increasing demands on accuracy of produced parts and assemblies. Besides the regular dimensional and geometrical inspection, in some cases, also a verification at very low temperatures is required. X-ray computed tomography (CT), as a tool for non-destructive testing, is able to examine samples and then determine dimensions for strictly stable temperature conditions necessary for the stability of the CT system. Until now, no system that allows scanning of samples larger than a few millimeters at temperatures much below 0 °C has been presented. This paper presents a cooling system for CT imaging of parts with length up to 300 mm at the extreme temperature conditions of -40 °C, which are based on automotive industry requests. It describes the equipment and conditions under which it is possible to achieve a temperature stability of samples at low temperatures, while keeping an independent temperature regulation of the CT system. The presented system uses a standard industrial CT device and a newly designed cooling stage with passive cooling based on phase-change material. The system is demonstrated on the measurement of plastic part (car door handle) at temperatures of -40 °C and 20 °C. The paper also presents the method of how to interpret the thermal changes using tools of the commercial software VGStudio MAX (Volume Graphics GmbH, Germany).

6.
J Microsc ; 256(2): 117-25, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25142511

RESUMO

Transmitted light holographic microscopy is particularly used for quantitative phase imaging of transparent microscopic objects such as living cells. The study of the cell is based on extraction of the dynamic data on cell behaviour from the time-lapse sequence of the phase images. However, the phase images are affected by the phase aberrations that make the analysis particularly difficult. This is because the phase deformation is prone to change during long-term experiments. Here, we present a novel algorithm for sequential processing of living cells phase images in a time-lapse sequence. The algorithm compensates for the deformation of a phase image using weighted least-squares surface fitting. Moreover, it identifies and segments the individual cells in the phase image. All these procedures are performed automatically and applied immediately after obtaining every single phase image. This property of the algorithm is important for real-time cell quantitative phase imaging and instantaneous control of the course of the experiment by playback of the recorded sequence up to actual time. Such operator's intervention is a forerunner of process automation derived from image analysis. The efficiency of the propounded algorithm is demonstrated on images of rat fibrosarcoma cells using an off-axis holographic microscope.


Assuntos
Fibrossarcoma/patologia , Holografia/métodos , Microscopia de Contraste de Fase/métodos , Algoritmos , Animais , Linhagem Celular Tumoral , Interpretação de Imagem Assistida por Computador/métodos , Ratos
7.
J Anat ; 225(4): 436-46, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25132002

RESUMO

High density mineralised protrusions (HDMP) from the tidemark mineralising front into hyaline articular cartilage (HAC) were first described in Thoroughbred racehorse fetlock joints and later in Icelandic horse hock joints. We now report them in human material. Whole femoral heads removed at operation for joint replacement or from dissection room cadavers were imaged using magnetic resonance imaging (MRI) dual echo steady state at 0.23 mm resolution, then 26-µm resolution high contrast X-ray microtomography, sectioned and embedded in polymethylmethacrylate, blocks cut and polished and re-imaged with 6-µm resolution X-ray microtomography. Tissue mineralisation density was imaged using backscattered electron SEM (BSE SEM) at 20 kV with uncoated samples. HAC histology was studied by BSE SEM after staining block faces with ammonium triiodide solution. HDMP arise via the extrusion of an unknown mineralisable matrix into clefts in HAC, a process of acellular dystrophic calcification. Their formation may be an extension of a crack self-healing mechanism found in bone and articular calcified cartilage. Mineral concentration exceeds that of articular calcified cartilage and is not uniform. It is probable that they have not been reported previously because they are removed by decalcification with standard protocols. Mineral phase morphology frequently shows the agglomeration of many fine particles into larger concretions. HDMP are surrounded by HAC, are brittle, and show fault lines within them. Dense fragments found within damaged HAC could make a significant contribution to joint destruction. At least larger HDMP can be detected with the best MRI imaging ex vivo.


Assuntos
Calcinose/patologia , Cartilagem Articular/patologia , Osteoartrite/patologia , Cadáver , Feminino , Impacto Femoroacetabular , Cabeça do Fêmur/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA