Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Cell Rep ; 35(11): 109249, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34133916

RESUMO

Cortical GABAergic interneurons are generated in large numbers in the ganglionic eminences and migrate into the cerebral cortex during embryogenesis. At early postnatal stages, during neuronal circuit maturation, autonomous and activity-dependent mechanisms operate within the cortex to adjust cell numbers by eliminating naturally occurring neuron excess. Here, we show that when cortical interneurons are generated in aberrantly high numbers-due to a defect in precursor cell proliferation during embryogenesis-extra parvalbumin interneurons persist in the postnatal mouse cortex during critical periods of cortical network maturation. Even though cell numbers are subsequently normalized, behavioral abnormalities remain in adulthood. This suggests that timely clearance of excess cortical interneurons is critical for correct functional maturation of circuits that drive adult behavior.


Assuntos
Comportamento Animal/fisiologia , Córtex Cerebral/crescimento & desenvolvimento , Interneurônios/patologia , Animais , Animais Recém-Nascidos , Contagem de Células , Proteínas de Homeodomínio/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , PTEN Fosfo-Hidrolase/metabolismo , Parvalbuminas/metabolismo
2.
Elife ; 92020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32515730

RESUMO

Myelin destruction is followed by resident glia activation and mobilization of endogenous progenitors (OPC) which participate in myelin repair. Here we show that in response to demyelination, mature oligodendrocytes (OLG) bordering the lesion express Ndst1, a key enzyme for heparan sulfates (HS) synthesis. Ndst1+ OLG form a belt that demarcates lesioned from intact white matter. Mice with selective inactivation of Ndst1 in the OLG lineage display increased lesion size, sustained microglia and OPC reactivity. HS production around the lesion allows Sonic hedgehog (Shh) binding and favors the local enrichment of this morphogen involved in myelin regeneration. In MS patients, Ndst1 is also found overexpressed in oligodendroglia and the number of Ndst1-expressing oligodendroglia is inversely correlated with lesion size and positively correlated with remyelination potential. Our study suggests that mature OLG surrounding demyelinated lesions are not passive witnesses but contribute to protection and regeneration by producing HS.


Assuntos
Doenças Desmielinizantes/metabolismo , Heparitina Sulfato/metabolismo , Oligodendroglia/metabolismo , Remielinização , Sulfotransferases/metabolismo , Animais , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Deleção de Genes , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Lisofosfatidilcolinas , Ativação de Macrófagos , Camundongos Transgênicos , Microglia/metabolismo , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Sulfotransferases/genética , Regulação para Cima
3.
J Neurosci ; 34(2): 539-53, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24403153

RESUMO

The three-layered piriform cortex, an integral part of the olfactory system, processes odor information relayed by olfactory bulb mitral cells. Specifically, mitral cell axons form the lateral olfactory tract (LOT) by targeting lateral olfactory tract (lot) guidepost cells in the piriform cortex. While lot cells and other piriform cortical neurons share a pallial origin, the factors that specify their precise phenotypes are poorly understood. Here we show that in mouse, the proneural genes Neurog1 and Neurog2 are coexpressed in the ventral pallium, a progenitor pool that first gives rise to Cajal-Retzius (CR) cells, which populate layer I of all cortical domains, and later to layer II/III neurons of the piriform cortex. Using loss-of-function and gain-of-function approaches, we find that Neurog1 has a unique early role in reducing CR cell neurogenesis by tempering Neurog2's proneural activity. In addition, Neurog1 and Neurog2 have redundant functions in the ventral pallium, acting in two phases to first specify a CR cell fate and later to specify layer II/III piriform cortex neuronal identities. In the early phase, Neurog1 and Neurog2 are also required for lot cell differentiation, which we reveal are a subset of CR neurons, the loss of which prevents mitral cell axon innervation and LOT formation. Consequently, mutation of Trp73, a CR-specific cortical gene, results in lot cell and LOT axon displacement. Neurog1 and Neurog2 thus have unique and redundant functions in the piriform cortex, controlling the timing of differentiation of early-born CR/lot cells and specifying the identities of later-born layer II/III neurons.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Córtex Cerebral/embriologia , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/fisiologia , Neurônios/citologia , Animais , Diferenciação Celular/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Eletroporação , Embrião de Mamíferos , Feminino , Imuno-Histoquímica , Hibridização In Situ , Masculino , Camundongos , Camundongos Mutantes , Células-Tronco Neurais/metabolismo
4.
Brain ; 136(Pt 8): 2457-73, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23831613

RESUMO

Altered development of the human cerebral cortex can cause severe malformations with often intractable focal epileptic seizures and may participate in common pathologies, notably epilepsy. This raises important conceptual and therapeutic issues. Two missense mutations in the sushi repeat-containing protein SRPX2 had been previously identified in epileptic disorders with or without structural developmental alteration of the speech cortex. In the present study, we aimed to decipher the precise developmental role of SRPX2, to have a better knowledge on the consequences of its mutations, and to start addressing therapeutic issues through the design of an appropriate animal model. Using an in utero Srpx2 silencing approach, we show that SRPX2 influences neuronal migration in the developing rat cerebral cortex. Wild-type, but not the mutant human SRPX2 proteins, rescued the neuronal migration phenotype caused by Srpx2 silencing in utero, and increased alpha-tubulin acetylation. Following in utero Srpx2 silencing, spontaneous epileptiform activity was recorded post-natally. The neuronal migration defects and the post-natal epileptic consequences were prevented early in embryos by maternal administration of tubulin deacetylase inhibitor tubacin. Hence epileptiform manifestations of developmental origin could be prevented in utero, using a transient and drug-based therapeutic protocol.


Assuntos
Anilidas/farmacologia , Movimento Celular/genética , Córtex Cerebral/metabolismo , Epilepsia/genética , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Proteínas de Membrana/genética , Neurônios/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Epilepsia/metabolismo , Inativação Gênica , Humanos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ratos , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
5.
J Neurosci ; 33(5): 1759-72, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23365216

RESUMO

The morphogen Sonic Hedgehog (Shh) controls the generation of oligodendrocyte (OLs) during embryonic development and regulates OL production in adulthood in the cortex and corpus callosum. The roles of Shh in CNS repair following lesions associated with demyelinating diseases are still unresolved. Here, we address this issue by using a model of focal demyelination induced by lysolecithin in the corpus callosum of adult mice. Shh transcripts and protein were not detected in control animals but were upregulated in a time-dependent manner in the oligodendroglial lineage within the lesion. We report an increased transcription of Shh target genes suggesting a broad reactivation of the Shh pathway. We show that the adenovirus-mediated transfer of Shh into the lesioned brain results in the attenuation of the lesion extent with the increase of OL progenitor cells (OPCs) and mature myelinating OL numbers due to survival, proliferation, and differentiation activities as well as the decrease of astrogliosis and macrophage infiltration. Furthermore, the blocking of Shh signaling during the lesion, using its physiological antagonist, Hedgehog interacting protein, results in a decrease of OPC proliferation and differentiation, preventing repair. Together, our findings identify Shh as a necessary factor playing a positive role during demyelination and indicate that its signaling activation stands as a potential therapeutic approach for myelin diseases.


Assuntos
Corpo Caloso/metabolismo , Doenças Desmielinizantes/metabolismo , Proteínas Hedgehog/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Animais , Corpo Caloso/patologia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/patologia , Expressão Gênica , Proteínas Hedgehog/genética , Camundongos , Bainha de Mielina/patologia , Oligodendroglia/patologia , Transdução de Sinais/genética , Transcrição Gênica
6.
Ann Neurol ; 71(2): 213-26, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22367994

RESUMO

OBJECTIVE: Multiple sclerosis is a neurodegenerative disease characterized by episodes of immune attack of oligodendrocytes leading to demyelination and progressive functional deficit. One therapeutic strategy to address disease progression could consist in stimulating the spontaneous regenerative process observed in some patients. Myelin regeneration requires endogenous oligodendrocyte progenitor migration and activation of the myelination program at the lesion site. In this study, we have tested the ability of olesoxime, a neuroprotective and neuroregenerative agent, to promote remyelination in the rodent central nervous system in vivo. METHODS: The effect of olesoxime on oligodendrocyte progenitor cell (OPC) differentiation and myelin synthesis was tested directly in organotypic slice cultures and OPC-neuron cocultures. Using naive animals and different mouse models of demyelination, we morphologically and functionally assessed the effect of the compound on myelination in vivo. RESULTS: Olesoxime accelerated oligodendrocyte maturation and enhanced myelination in vitro and in vivo in naive animals during development and also in the adult brain without affecting oligodendrocyte survival or proliferation. In mouse models of demyelination and remyelination, olesoxime favored the repair process, promoting myelin formation with consequent functional improvement. INTERPRETATION: Our observations support the strategy of promoting oligodendrocyte maturation and myelin synthesis to enhance myelin repair and functional recovery. We also provide proof of concept that olesoxime could be useful for the treatment of demyelinating diseases.


Assuntos
Colestenonas/uso terapêutico , Doenças Desmielinizantes/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Bainha de Mielina/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Animais , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Modelos Animais de Doenças , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Inibidores da Monoaminoxidase/toxicidade , Esclerose Múltipla/fisiopatologia , Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia , Ratos , Ratos Sprague-Dawley
7.
Neuron ; 71(4): 574-88, 2011 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-21867876

RESUMO

The generation of a functional nervous system involves a multitude of steps that are controlled by just a few families of extracellular signaling molecules. Among these, the fibroblast growth factor (FGF) family is particularly prominent for the remarkable diversity of its functions. FGFs are best known for their roles in the early steps of patterning of the neural primordium and proliferation of neural progenitors. However, other equally important functions have emerged more recently, including in the later steps of neuronal migration, axon navigation, and synaptogenesis. We review here these diverse functions and discuss the mechanisms that account for this unusual range of activities. FGFs are essential components of most protocols devised to generate therapeutically important neuronal populations in vitro or to stimulate neuronal repair in vivo. How FGFs promote the development of the nervous system and maintain its integrity will thus remain an important focus of research in the future.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Sistema Nervoso/embriologia , Sistema Nervoso/crescimento & desenvolvimento , Neurogênese/fisiologia , Neurônios/fisiologia , Animais , Movimento Celular , Proliferação de Células , Fatores de Crescimento de Fibroblastos/classificação , Fatores de Crescimento de Fibroblastos/genética , Humanos , Sistema Nervoso/citologia , Sistema Nervoso/metabolismo , Células-Tronco Neurais/fisiologia , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/classificação , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia
8.
Cereb Cortex ; 21(11): 2599-611, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21467208

RESUMO

Cajal-Retzius cells are essential pioneer neurons that guide neuronal migration in the developing neocortex. During development, Cajal-Retzius cells arise from distinct progenitor domains that line the margins of the dorsal telencephalon, or pallium. Here, we show that the proneural gene Ascl1 is expressed in Cajal-Retzius cell progenitors in the pallial septum, ventral pallium, and cortical hem. Using a short-term lineage trace, we demonstrate that it is primarily the Ascl1-expressing progenitors in the pallial septum and ventral pallium that differentiate into Cajal-Retzius cells. Accordingly, we found a small, albeit significant reduction in the number of Reelin(+) and Trp73(+) Cajal-Retzius cells in the Ascl1(-/-) neocortex. Conversely, using a gain-of-function approach, we found that Ascl1 induces the expression of both Reelin, a Cajal-Retzius marker, and Tbr1, a marker of pallial-derived neurons, in a subset of early-stage pallial progenitors, an activity that declines over developmental time. Taken together, our data indicate that the proneural gene Ascl1 is required and sufficient to promote the differentiation of a subset of Cajal-Retzius neurons during early neocortical development. Notably, this is the first study that reports a function for Ascl1 in the pallium, as this gene is best known for its role in specifying subpallial neuronal identities.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Neocórtex/embriologia , Células-Tronco Neurais/citologia , Neurogênese/genética , Neurônios/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem da Célula , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Neocórtex/citologia , Neocórtex/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Proteína Reelina
9.
Development ; 137(2): 293-302, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20040495

RESUMO

Cajal-Retzius (CR) cells play a key role in the formation of the cerebral cortex. These pioneer neurons are distributed throughout the cortical marginal zone in distinct graded distributions. Fate mapping and cell lineage tracing studies have recently shown that CR cells arise from restricted domains of the pallial ventricular zone, which are associated with signalling centres involved in the early regionalisation of the telencephalic vesicles. In this study, we identified a subpopulation of CR cells in the rostral telencephalon that expresses Er81, a downstream target of Fgf8 signalling. We investigated the role of the rostral telencephalic patterning centre, which secretes FGF molecules, in the specification of these cells. Using pharmacological inhibitors and genetic inactivation of Fgf8, we showed that production of Fgf8 by the rostral telencephalic signalling centre is required for the specification of the Er81+ CR cell population. Moreover, the analysis of Fgf8 gain-of-function in cultivated mouse embryos and of Emx2 and Gli3 mutant embryos revealed that ectopic Fgf8 signalling promotes the generation of CR cells with a rostral phenotype from the dorsal pallium. These data showed that Fgf8 signalling is both required and sufficient to induce rostral CR cells. Together, our results shed light on the mechanisms specifying rostral CR cells and further emphasise the crucial role of telencephalic signalling centres in the generation of distinct CR cell populations.


Assuntos
Fator 8 de Crescimento de Fibroblasto/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fator 8 de Crescimento de Fibroblasto/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Telencéfalo/citologia , Telencéfalo/embriologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Gli3 com Dedos de Zinco
10.
Nature ; 455(7209): 114-8, 2008 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-18690213

RESUMO

Motility is a universal property of newly generated neurons. How cell migration is coordinately regulated with other aspects of neuron production is not well understood. Here we show that the proneural protein neurogenin 2 (Neurog2), which controls neurogenesis in the embryonic cerebral cortex, directly induces the expression of the small GTP-binding protein Rnd2 (ref. 3) in newly generated mouse cortical neurons before they initiate migration. Rnd2 silencing leads to a defect in radial migration of cortical neurons similar to that observed when the Neurog2 gene is deleted. Remarkably, restoring Rnd2 expression in Neurog2-mutant neurons is sufficient to rescue their ability to migrate. Our results identify Rnd2 as a novel essential regulator of neuronal migration in the cerebral cortex and demonstrate that Rnd2 is a major effector of Neurog2 function in the promotion of migration. Thus, a proneural protein controls the complex cellular behaviour of cell migration through a remarkably direct pathway involving the transcriptional activation of a small GTP-binding protein.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Movimento Celular , Córtex Cerebral/citologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Forma Celular , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Elementos Facilitadores Genéticos/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Interferência de RNA , Proteínas rho de Ligação ao GTP/deficiência , Proteínas rho de Ligação ao GTP/genética
11.
BMC Biol ; 6: 15, 2008 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-18377642

RESUMO

BACKGROUND: The proneural proteins Mash1 and Ngn2 are key cell autonomous regulators of neurogenesis in the mammalian central nervous system, yet little is known about the molecular pathways regulated by these transcription factors. RESULTS: Here we identify the downstream effectors of proneural genes in the telencephalon using a genomic approach to analyze the transcriptome of mice that are either lacking or overexpressing proneural genes. Novel targets of Ngn2 and/or Mash1 were identified, such as members of the Notch and Wnt pathways, and proteins involved in adhesion and signal transduction. Next, we searched the non-coding sequence surrounding the predicted proneural downstream effector genes for evolutionarily conserved transcription factor binding sites associated with newly defined consensus binding sites for Ngn2 and Mash1. This allowed us to identify potential novel co-factors and co-regulators for proneural proteins, including Creb, Tcf/Lef, Pou-domain containing transcription factors, Sox9, and Mef2a. Finally, a gene regulatory network was delineated using a novel Bayesian-based algorithm that can incorporate information from diverse datasets. CONCLUSION: Together, these data shed light on the molecular pathways regulated by proneural genes and demonstrate that the integration of experimentation with bioinformatics can guide both hypothesis testing and hypothesis generation.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Redes Reguladoras de Genes , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Telencéfalo/embriologia , Algoritmos , Animais , Teorema de Bayes , Adesão Celular/genética , Biologia Computacional , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Mutação , Transdução de Sinais/genética
12.
Cereb Cortex ; 16 Suppl 1: i138-51, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16766700

RESUMO

We showed previously that the proneural genes Neurogenin1 (Ngn1) and Ngn2 are required to specify the phenotypes of early- and not late-born neurons in the neocortex, acting in part through repression of Mash1, a third cortically expressed proneural gene. The precise timing of Ngn1/2 specification activity was unexpected given these genes are expressed throughout cortical development, prompting us to search for a later function. Here we reveal that Ngn2 and Mash1 are expressed in a dynamic fashion, acquiring a cell cycle-biased, nonoverlapping distribution, with preferential expression in prospective basal progenitors, during mid corticogenesis. We also identified a new function for Ngn2 during this latter period, demonstrating that it is required to regulate the transit of cortical progenitors from the ventricular zone (VZ) to the subventricular zone. Notably, Ngn2 regulates progenitor maturation at least in part through repression of Mash1 as misexpression of Mash1 strongly enhanced progenitor cell exit from the VZ. Significantly, the ability of Mash1 to promote progenitor cell maturation occurred independently of its ability to respecify cortical cells and is thus a novel function for Mash1. Taken together, these data support a model whereby Ngn2 and Mash1 function together to regulate the zonal distribution of progenitors in the developing neocortex.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Células-Tronco/citologia , Envelhecimento/patologia , Envelhecimento/fisiologia , Animais , Agregação Celular , Diferenciação Celular , Movimento Celular , Células Cultivadas , Técnicas In Vitro , Masculino , Camundongos , Neurônios/fisiologia , Organogênese/fisiologia , Células-Tronco/fisiologia
13.
Cereb Cortex ; 14(12): 1408-20, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15238450

RESUMO

Projection neurons destined for the cortical plate are generated sequentially from the proliferative ventricular and subventricular zones (VZ/SVZ) of the pallium. However, the respective contribution of both proliferative zones to the generation of cortical plate neurons is better established in humans and non-human primates than in rodents. We identified Cux2 as a new marker for murine cortical subpopulations and used it to provide new insights to the development of the mouse cortex. Cux2 is an orthologue of the Drosophila cut gene, which encodes a homeodomain protein involved in neuronal specification. During cortical development Cux2 identifies two subpopulations with different spatial origins, migratory behaviours and phenotypic characteristics: (i) a population of interneurons, which invades the pallium from the subpallium; and (ii) a neuronal population produced in the pallium around embryonic day 11.5, which divides in the SVZ and accumulates in the intermediate zone (IZ). Subsequently, Cux2 is a marker of upper cortical layers. Using different molecular markers and Pax6-deficient mice, we provide data that suggest a relationship between the early-determined Cux2-positive neuronal precursors in the SVZ/IZ and upper layer neurons. This suggests that laminar determination of upper cortical layer neurons occurs during the earliest stages of corticogenesis.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Ventrículos Cerebrais/citologia , Ventrículos Cerebrais/metabolismo , Proteínas de Homeodomínio/biossíntese , Neurônios/metabolismo , Animais , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Linhagem da Célula/fisiologia , Córtex Cerebral/embriologia , Ventrículos Cerebrais/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Camundongos Mutantes Neurológicos , Neurônios/citologia
14.
Mol Cell Neurosci ; 25(4): 692-706, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15080897

RESUMO

The progeny of neural stem cells in the subventricular zone (SVZ) of the adult mammalian brain consists in polysialylated NCAM-expressing immature neurons (PSA(+) cells), which migrate to the olfactory bulb (OB) to differentiate into GABAergic interneurons. We purified murine PSA(+) cells directly from the adult brain by FACS and analyzed their gene expression profile by SAGE. Comparative analyses led to the identification of precursor-enriched genes, including Survivin, Sox-4, Meis2, Dishevelled-2, C3aR1 and Riken 3110003A17, and many so far uncharacterized transcripts. Cluster analysis showed that groups of genes involved in axon guidance and gene clusters implicated in chemotaxis are strongly upregulated, indicating a role of both cues in the control of cell migration in the adult brain. Furthermore, genes involved in apoptosis and cell proliferation are co-expressed, suggesting that the amount of precursors that is present in the adult brain is a result of an equilibrium of these processes.


Assuntos
Encéfalo/citologia , Diferenciação Celular/genética , Movimento Celular/genética , Homeostase/genética , Neurônios/citologia , Células-Tronco/citologia , Animais , Apoptose/genética , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Técnicas de Cultura de Células/métodos , Divisão Celular/genética , Separação Celular/métodos , Células Cultivadas , Quimiotaxia/genética , Sinais (Psicologia) , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Interneurônios/citologia , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Família Multigênica/genética , Proteínas do Tecido Nervoso/genética , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Ácidos Siálicos/metabolismo , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA