Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Methods ; 20(2): 284-294, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36690741

RESUMO

Cryo-electron tomograms capture a wealth of structural information on the molecular constituents of cells and tissues. We present DeePiCt (deep picker in context), an open-source deep-learning framework for supervised segmentation and macromolecular complex localization in cryo-electron tomography. To train and benchmark DeePiCt on experimental data, we comprehensively annotated 20 tomograms of Schizosaccharomyces pombe for ribosomes, fatty acid synthases, membranes, nuclear pore complexes, organelles, and cytosol. By comparing DeePiCt to state-of-the-art approaches on this dataset, we show its unique ability to identify low-abundance and low-density complexes. We use DeePiCt to study compositionally distinct subpopulations of cellular ribosomes, with emphasis on their contextual association with mitochondria and the endoplasmic reticulum. Finally, applying pre-trained networks to a HeLa cell tomogram demonstrates that DeePiCt achieves high-quality predictions in unseen datasets from different biological species in a matter of minutes. The comprehensively annotated experimental data and pre-trained networks are provided for immediate use by the community.


Assuntos
Mitocôndrias , Ribossomos , Humanos , Células HeLa , Tomografia com Microscopia Eletrônica/métodos , Retículo Endoplasmático , Processamento de Imagem Assistida por Computador/métodos
2.
Commun Biol ; 5(1): 1141, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36302954

RESUMO

Muscle size is controlled by the PI3K-PKB/Akt-mTORC1-FoxO pathway, which integrates signals from growth factors, energy and amino acids to activate protein synthesis and inhibit protein breakdown. While mTORC1 activity is necessary for PKB/Akt-induced muscle hypertrophy, its constant activation alone induces muscle atrophy. Here we show that this paradox is based on mTORC1 activity promoting protein breakdown through the ubiquitin-proteasome system (UPS) by simultaneously inducing ubiquitin E3 ligase expression via feedback inhibition of PKB/Akt and proteasome biogenesis via Nuclear Factor Erythroid 2-Like 1 (Nrf1). Muscle growth was restored by reactivation of PKB/Akt, but not by Nrf1 knockdown, implicating ubiquitination as the limiting step. However, both PKB/Akt activation and proteasome depletion by Nrf1 knockdown led to an immediate disruption of proteome integrity with rapid accumulation of damaged material. These data highlight the physiological importance of mTORC1-mediated PKB/Akt inhibition and point to juxtaposed roles of the UPS in atrophy and proteome integrity.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteostase , Proteoma/metabolismo , Músculo Esquelético/metabolismo
3.
Science ; 376(6598): eabm9506, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35679397

RESUMO

INTRODUCTION The eukaryotic nucleus pro-tects the genome and is enclosed by the two membranes of the nuclear envelope. Nuclear pore complexes (NPCs) perforate the nuclear envelope to facilitate nucleocytoplasmic transport. With a molecular weight of ∼120 MDa, the human NPC is one of the larg-est protein complexes. Its ~1000 proteins are taken in multiple copies from a set of about 30 distinct nucleoporins (NUPs). They can be roughly categorized into two classes. Scaf-fold NUPs contain folded domains and form a cylindrical scaffold architecture around a central channel. Intrinsically disordered NUPs line the scaffold and extend into the central channel, where they interact with cargo complexes. The NPC architecture is highly dynamic. It responds to changes in nuclear envelope tension with conforma-tional breathing that manifests in dilation and constriction movements. Elucidating the scaffold architecture, ultimately at atomic resolution, will be important for gaining a more precise understanding of NPC function and dynamics but imposes a substantial chal-lenge for structural biologists. RATIONALE Considerable progress has been made toward this goal by a joint effort in the field. A synergistic combination of complementary approaches has turned out to be critical. In situ structural biology techniques were used to reveal the overall layout of the NPC scaffold that defines the spatial reference for molecular modeling. High-resolution structures of many NUPs were determined in vitro. Proteomic analysis and extensive biochemical work unraveled the interaction network of NUPs. Integra-tive modeling has been used to combine the different types of data, resulting in a rough outline of the NPC scaffold. Previous struc-tural models of the human NPC, however, were patchy and limited in accuracy owing to several challenges: (i) Many of the high-resolution structures of individual NUPs have been solved from distantly related species and, consequently, do not comprehensively cover their human counterparts. (ii) The scaf-fold is interconnected by a set of intrinsically disordered linker NUPs that are not straight-forwardly accessible to common structural biology techniques. (iii) The NPC scaffold intimately embraces the fused inner and outer nuclear membranes in a distinctive topol-ogy and cannot be studied in isolation. (iv) The conformational dynamics of scaffold NUPs limits the resolution achievable in structure determination. RESULTS In this study, we used artificial intelligence (AI)-based prediction to generate an exten-sive repertoire of structural models of human NUPs and their subcomplexes. The resulting models cover various domains and interfaces that so far remained structurally uncharac-terized. Benchmarking against previous and unpublished x-ray and cryo-electron micros-copy structures revealed unprecedented accu-racy. We obtained well-resolved cryo-electron tomographic maps of both the constricted and dilated conformational states of the hu-man NPC. Using integrative modeling, we fit-ted the structural models of individual NUPs into the cryo-electron microscopy maps. We explicitly included several linker NUPs and traced their trajectory through the NPC scaf-fold. We elucidated in great detail how mem-brane-associated and transmembrane NUPs are distributed across the fusion topology of both nuclear membranes. The resulting architectural model increases the structural coverage of the human NPC scaffold by about twofold. We extensively validated our model against both earlier and new experimental data. The completeness of our model has enabled microsecond-long coarse-grained molecular dynamics simulations of the NPC scaffold within an explicit membrane en-vironment and solvent. These simulations reveal that the NPC scaffold prevents the constriction of the otherwise stable double-membrane fusion pore to small diameters in the absence of membrane tension. CONCLUSION Our 70-MDa atomically re-solved model covers >90% of the human NPC scaffold. It captures conforma-tional changes that occur during dilation and constriction. It also reveals the precise anchoring sites for intrinsically disordered NUPs, the identification of which is a prerequisite for a complete and dy-namic model of the NPC. Our study exempli-fies how AI-based structure prediction may accelerate the elucidation of subcellular ar-chitecture at atomic resolution. [Figure: see text].


Assuntos
Inteligência Artificial , Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , Transporte Ativo do Núcleo Celular , Microscopia Crioeletrônica , Humanos , Simulação de Dinâmica Molecular , Poro Nuclear/química , Complexo de Proteínas Formadoras de Poros Nucleares/química , Proteômica
4.
Science ; 374(6573): eabd9776, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34762489

RESUMO

In eukaryotic cells, nuclear pore complexes (NPCs) fuse the inner and outer nuclear membranes and mediate nucleocytoplasmic exchange. They are made of 30 different nucleoporins and form a cylindrical architecture around an aqueous central channel. This architecture is highly dynamic in space and time. Variations in NPC diameter have been reported, but the physiological circumstances and the molecular details remain unknown. Here, we combined cryo­electron tomography with integrative structural modeling to capture a molecular movie of the respective large-scale conformational changes in cellulo. Although NPCs of exponentially growing cells adopted a dilated conformation, they reversibly constricted upon cellular energy depletion or conditions of hypertonic osmotic stress. Our data point to a model where the nuclear envelope membrane tension is linked to the conformation of the NPC.


Assuntos
Membrana Nuclear/fisiologia , Poro Nuclear/fisiologia , Poro Nuclear/ultraestrutura , Transporte Ativo do Núcleo Celular , Fenômenos Biomecânicos , Microscopia Crioeletrônica , Citoplasma/metabolismo , Metabolismo Energético , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Modelos Biológicos , Membrana Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/química , Pressão Osmótica , Schizosaccharomyces/crescimento & desenvolvimento , Schizosaccharomyces/ultraestrutura , Proteínas de Schizosaccharomyces pombe/química , Estresse Fisiológico
5.
Cell ; 184(4): 1032-1046.e18, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33571428

RESUMO

Human immunodeficiency virus (HIV-1) remains a major health threat. Viral capsid uncoating and nuclear import of the viral genome are critical for productive infection. The size of the HIV-1 capsid is generally believed to exceed the diameter of the nuclear pore complex (NPC), indicating that capsid uncoating has to occur prior to nuclear import. Here, we combined correlative light and electron microscopy with subtomogram averaging to capture the structural status of reverse transcription-competent HIV-1 complexes in infected T cells. We demonstrated that the diameter of the NPC in cellulo is sufficient for the import of apparently intact, cone-shaped capsids. Subsequent to nuclear import, we detected disrupted and empty capsid fragments, indicating that uncoating of the replication complex occurs by breaking the capsid open, and not by disassembly into individual subunits. Our data directly visualize a key step in HIV-1 replication and enhance our mechanistic understanding of the viral life cycle.


Assuntos
Capsídeo/metabolismo , HIV-1/metabolismo , Poro Nuclear/metabolismo , Transporte Ativo do Núcleo Celular , Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Células HEK293 , Infecções por HIV/virologia , HIV-1/ultraestrutura , Humanos , Modelos Biológicos , Poro Nuclear/ultraestrutura , Poro Nuclear/virologia , Transcrição Reversa , Vírion/metabolismo , Internalização do Vírus , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
6.
Nature ; 586(7831): 796-800, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32879490

RESUMO

Nuclear pore complexes (NPCs) fuse the inner and outer membranes of the nuclear envelope. They comprise hundreds of nucleoporins (Nups) that assemble into multiple subcomplexes and form large central channels for nucleocytoplasmic exchange1,2. How this architecture facilitates messenger RNA export, NPC biogenesis and turnover remains poorly understood. Here we combine in situ structural biology and integrative modelling with correlative light and electron microscopy and molecular perturbation to structurally analyse NPCs in intact Saccharomyces cerevisiae cells within the context of nuclear envelope remodelling. We find an in situ conformation and configuration of the Nup subcomplexes that was unexpected from the results of previous in vitro analyses. The configuration of the Nup159 complex appears critical to spatially accommodate its function as an mRNA export platform, and as a mediator of NPC turnover. The omega-shaped nuclear envelope herniae that accumulate in nup116Δ cells3 conceal partially assembled NPCs lacking multiple subcomplexes, including the Nup159 complex. Under conditions of starvation, herniae of a second type are formed that cytoplasmically expose NPCs. These results point to a model of NPC turnover in which NPC-containing vesicles bud off from the nuclear envelope before degradation by the autophagy machinery. Our study emphasizes the importance of investigating the structure-function relationship of macromolecular complexes in their cellular context.


Assuntos
Microscopia Crioeletrônica , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/ultraestrutura , Autofagia , Modelos Moleculares , Poro Nuclear/química , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tomografia
7.
Nat Commun ; 11(1): 876, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054835

RESUMO

Cryo electron tomography with subsequent subtomogram averaging is a powerful technique to structurally analyze macromolecular complexes in their native context. Although close to atomic resolution in principle can be obtained, it is not clear how individual experimental parameters contribute to the attainable resolution. Here, we have used immature HIV-1 lattice as a benchmarking sample to optimize the attainable resolution for subtomogram averaging. We systematically tested various experimental parameters such as the order of projections, different angular increments and the use of the Volta phase plate. We find that although any of the prominently used acquisition schemes is sufficient to obtain subnanometer resolution, dose-symmetric acquisition provides considerably better outcome. We discuss our findings in order to provide guidance for data acquisition. Our data is publicly available and might be used to further develop processing routines.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Benchmarking , Microscopia Crioeletrônica/normas , Bases de Dados Factuais , Tomografia com Microscopia Eletrônica/normas , HIV-1/química , HIV-1/ultraestrutura , Substâncias Macromoleculares/química , Substâncias Macromoleculares/ultraestrutura , Modelos Moleculares , Biologia Molecular/métodos , Biologia Molecular/normas , Vírion/química , Vírion/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA