Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Thorac Dis ; 13(1): 213-219, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33569201

RESUMO

BACKGROUND: Tube thoracostomy is the definitive treatment for most significant chest trauma, including injuries resulting in pneumothorax, hemothorax, and hemopneumothorax. However, traditional chest tubes fail to sufficiently remove blood up to 20% of the time (i.e., retained hemothorax), which can lead to empyema and fibrothorax, as well as significant morbidity and mortality. Here we describe the use of a novel chest tube system in a swine model of hemothorax. METHODS: This was an intra-animal-paired, randomized-controlled study of hemothorax evacuation using the PleuraPath™ Thoracostomy System (PPTS) compared to a traditional chest tube in large Yorkshire-Landrace swine (75-85 kg). One liter of autologous whole blood was infused into each pleural cavity simultaneously with subsequent drainage from each device individually monitored for a total of 120 minutes, before the end of the experiment and necroscopy. RESULTS: Six animals completed the full protocol. On average, the PPTS removed 17% more blood (P=0.049) and left 19.1% less residual hemothorax (P=0.023) as compared to the standard of care during the first two hours of use. No complications or iatrogenic injury were identified in any animal for either device. CONCLUSIONS: The novel PPTS device was superior to the traditional chest tube drainage system in this acute, large-animal model of retained hemothorax. While this study supports clinical translation, further research will be required to assess efficacy and optimize device use in humans.

2.
J Surg Res ; 259: 175-181, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33290892

RESUMO

BACKGROUND: Noncompressible torso hemorrhage (NCTH) is a leading cause of traumatic exsanguination, requiring emergent damage control surgery performed by a highly trained surgeon in a sterile operating environment. A self-expanding, intraabdominally deployed, thermoreversible foam is one proposed method to potentially task shift temporizing hemostasis to earlier providers and additional settings. The purpose of this study was to assess the feasibility of using Fast Onset Abdominal Management (FOAM) in a lethal swine model of NCTH. METHODS: This was a proof-of-concept study comparing FOAM intervention in large Yorkshire swine to historical control animals in the established Ross-Burns model of NCTH. After animal preparation, a Grade IV liver laceration was surgically induced, followed by a free bleed period of 10 min. FOAM was then deployed to a goal intraabdominal pressure of 60 mm Hg for 5 min, followed by a total 60-min observation period following injury. RESULTS: At the end of the experiment, the FOAM agent was found to be distributed throughout the peritoneal cavity in all animals, without signs of iatrogenic injury. The FOAM group demonstrated a significantly higher mean arterial pressure compared with historical controls and a trend toward improved survival: 82% (9/11) compared with 50% for controls (7/14; P = 0.082). CONCLUSIONS: This is the first study to describe the use of a thermoresponsive foam to manage NCTH and successfully demonstrated proof-of-concept feasibility of FOAM deployment. These results provide strong support for future, higher-powered studies to confirm improved survival with this novel intervention.


Assuntos
Traumatismos Abdominais/terapia , Exsanguinação/terapia , Hemorragia/terapia , Traumatismos Abdominais/mortalidade , Animais , Modelos Animais de Doenças , Exsanguinação/mortalidade , Estudos de Viabilidade , Hemorragia/mortalidade , Poloxâmero , Suínos , Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA