Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 112(6): 066803, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24580702

RESUMO

We report the study of gold-SrTiO3 (STO)-gold memristors where the doping concentration in STO can be fine-tuned through electric field migration of oxygen vacancies. In this tunnel junction device, the evolution of the density of states (DOS) can be followed continuously across the metal-insulator transition (MIT). At very low dopant concentration, the junction displays characteristic signatures of discrete dopant levels. As the dopant concentration increases, the semiconductor band gap fills in but a soft Coulomb gap remains. At even higher doping, a transition to a metallic state occurs where the DOS at the Fermi level becomes finite and Altshuler-Aronov corrections to the DOS are observed. At the critical point of the MIT, the DOS scales linearly with energy N(ϵ)∼ϵ, the possible signature of multifractality.

2.
Phys Rev Lett ; 110(5): 056601, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23414038

RESUMO

We show that the main mechanism for the dc voltage or dc current induced insulator-metal transition in vanadium dioxide VO(2) is due to local Joule heating and not a purely electronic effect. This "tour de force" experiment was accomplished by using the fluorescence spectra of rare-earth doped micron sized particles as local temperature sensors. As the insulator-metal transition is induced by a dc voltage or dc current, the local temperature reaches the transition temperature indicating that Joule heating plays a predominant role. This has critical implications for the understanding of the dc voltage or dc current induced insulator-metal transition and has a direct impact on applications which use dc voltage or dc current to externally drive the transition.

3.
Phys Rev Lett ; 107(17): 176803, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22107555

RESUMO

We describe current-voltage (I-V) characteristics of alkyl-ligated gold nanocrystals ~5 nm arrays in a long screening length limit. Arrays with different alkyl ligand lengths have been prepared to tune the electronic tunnel coupling between the nanocrystals. For long ligands, electronic diffusion occurs through sequential tunneling and follows activated laws, as a function of temperature σ∝e(-T(0)/T) and as a function of electric field I∝e(-E(0)/E). For better conducting arrays, i.e., with small ligands, the transport properties cross over to the cotunneling regime and follow Efros-Shklovskii laws as a function of temperature σ∝e(-(T(ES)/T)(1/2) and as a function of electric field I∝e(-(E)(ES)/E)(1/2). The data show that electronic transport in nanocrystal arrays can be tuned from the sequential tunneling to the cotunneling regime by increasing the tunnel barrier transparency.

4.
Phys Rev Lett ; 106(19): 197002, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21668192

RESUMO

We report on laser-excited angle-resolved photoemission spectroscopy in the electron-doped cuprate Sm1.85Ce0.15CuO(4-δ). The data show the existence of a nodal hole-pocket Fermi surface both in the normal and superconducting states. We prove that its origin is long-range antiferromagnetism by an analysis of the coherence factors in the main and folded bands. This coexistence of long-range antiferrmagnetism and superconductivity implies that electron-doped cuprates are two-Fermi-surface superconductors. The measured superconducting gap in the nodal hole pocket is compatible with a d-wave symmetry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA