Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; : e202300900, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856848

RESUMO

Studies on the electrochemical hydrogenation (ECH) of levulinic acid (LA) to valeric acid (VA) or γ-valerolactone (GVL) have mainly focused on the electroreduction of LA in acidic aqueous solutions. However, the narrow range of applied potentials has hindered understanding of some mechanistic aspects of LA electrochemical conversion. Earlier, we discovered that employing proton-deficient non-aqueous reaction media provides more comprehensive insights into the mechanism of LA electrochemical reduction. Here, we conducted further investigations into the LA electroreduction process using cyclic voltammetry in various organic solvents on a Pt electrode and on various electrode materials in acetonitrile, both with and without the addition of proton donors. The products of the ECH processes were identified using HPLC. The solvent nature, the presence of proton donors, the electrode material, and the applied potential strongly influence the LA electroreduction process. This study reveals that LA, in the presence proton donors, can undergo electroreduction through different pathways, depending on the difference (ΔE1/2) between the reduction half-wave potential of protons and LA. When the difference is large, the LA reduction is incomplete and the formation of GVL is observed. Under the close reduction potentials of protons and LA, LA can be completely reduced to VA.

2.
Dalton Trans ; 51(1): 324-339, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34897333

RESUMO

A series of trinuclear µ3-vinylidene ReFePt clusters were synthesized by the application of two approaches: (i) reactions of the binuclear RePt µ-vinylidene complexes with Fe2(CO)9; (ii) ligand substitution or exchange reactions at the Pt atom in the synthesized ReFePt clusters. The molecular structures of CpReFePt(µ3-CCHPh)(CO)5[P(OEt)3]L [L = CO; P(OEt)3] were determined by an X-ray diffraction study. The obtained compounds were studied by IR and 1H, 13C and 31P NMR spectroscopy. The spectroscopic study revealed that the clusters CpReFePt(µ3-CCHPh)(CO)5[P(OEt)3]L [L = CO; P(OEt)3] and CpReFePt(µ3-CCHPh)(CO)6[P(OPri)3] undergo isomerization upon dissolution, resulting in three isomers with different positions of the µ3-vinylidene ligand over the ReFePt core. The redox properties of the clusters were studied by electrochemical methods. The relatively stable cation-radicals obtained by chemical oxidation of CpReFePt(µ3-CCHPh)(CO)6[P(OPri)3] and CpReFePt(µ3-CCHPh)(CO)5[P(OEt)3]2 with ferrocenium tetrafluoroborate were characterized by EPR spectroscopy.

3.
Foods ; 10(11)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34828852

RESUMO

Xanthan is an important polysaccharide with many beneficial properties. Sulfated xanthan derivatives have anticoagulant and antithrombotic activity. This work proposes a new method for the synthesis of xanthan sulfates using sulfamic acid. Various N-substituted ureas have been investigated as process activators. It was found that urea has the greatest activating ability. BBD of xanthan sulfation process with sulfamic acid in 1,4-dioxane has been carried out. It was shown that the optimal conditions for the sulfation of xanthan (13.1 wt% sulfur content) are: the amount of sulfating complex per 1 g of xanthan is 3.5 mmol, temperature 90 °C, duration 2.3 h. Sulfated xanthan with the maximum sulfur content was analyzed by physicochemical methods. Thus, in the FTIR spectrum of xanthan sulfate, in comparison with the initial xanthanum, absorption bands appear at 1247 cm-1, which corresponds to the vibrations of the sulfate group. It was shown by GPC chromatography that the starting xanthan gum has a bimodal molecular weight distribution of particles, including a high molecular weight fraction with Mw > 1000 kDa and an LMW fraction with Mw < 600 kDa. It was found that the Mw of sulfated xanthan gum has a lower value (~612 kDa) in comparison with the original xanthan gum, and a narrower molecular weight distribution and is characterized by lower PD values. It was shown by thermal analysis that the main decomposition of xanthan sulfate, in contrast to the initial xanthan, occurs in two stages. The DTG curve has two pronounced peaks, with maxima at 226 and 286 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA