Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 1169-1173, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33018195

RESUMO

The main curative treatment for localized colon cancer is surgical resection. However when tumor residuals are left positive margins are found during the histological examinations and additional treatment is needed to inhibit recurrence. Hyperspectral imaging (HSI) can offer non-invasive surgical guidance with the potential of optimizing the surgical effectiveness. In this paper we investigate the capability of HSI for automated colon cancer detection in six ex-vivo specimens employing a spectral-spatial patch-based classification approach. The results demonstrate the feasibility in assessing the benign and malignant boundaries of the lesion with a sensitivity of 0.88 and specificity of 0.78. The results are compared with the state-of-the-art deep learning based approaches. The method with a new hybrid CNN outperforms the state-of the-art approaches (0.74 vs. 0.82 AUC). This study paves the way for further investigation towards improving surgical outcomes with HSI.


Assuntos
Neoplasias do Colo , Cirurgia Assistida por Computador , Biópsia , Neoplasias do Colo/diagnóstico por imagem , Humanos , Recidiva Local de Neoplasia/diagnóstico por imagem
2.
Med Phys ; 47(4): 1692-1701, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31975523

RESUMO

PURPOSE: Vestibular schwannomas (VSs) are uncommon benign brain tumors, generally treated using Gamma Knife radiosurgery (GKRS). However, due to the possible adverse effect of transient tumor enlargement (TTE), large VS tumors are often surgically removed instead of treated radiosurgically. Since microsurgery is highly invasive and results in a significant increased risk of complications, GKRS is generally preferred. Therefore, prediction of TTE for large VS tumors can improve overall VS treatment and enable physicians to select the most optimal treatment strategy on an individual basis. Currently, there are no clinical factors known to be predictive for TTE. In this research, we aim at predicting TTE following GKRS using texture features extracted from MRI scans. METHODS: We analyzed clinical data of patients with VSs treated at our Gamma Knife center. The data was collected prospectively and included patient- and treatment-related characteristics and MRI scans obtained at day of treatment and at follow-up visits, 6, 12, 24 and 36 months after treatment. The correlations of the patient- and treatment-related characteristics to TTE were investigated using statistical tests. From the treatment scans, we extracted the following MRI image features: first-order statistics, Minkowski functionals (MFs), and three-dimensional gray-level co-occurrence matrices (GLCMs). These features were applied in a machine learning environment for classification of TTE, using support vector machines. RESULTS: In a clinical data set, containing 61 patients presenting obvious non-TTE and 38 patients presenting obvious TTE, we determined that patient- and treatment-related characteristics do not show any correlation to TTE. Furthermore, first-order statistical MRI features and MFs did not significantly show prognostic values using support vector machine classification. However, utilizing a set of 4 GLCM features, we achieved a sensitivity of 0.82 and a specificity of 0.69, showing their prognostic value of TTE. Moreover, these results increased for larger tumor volumes obtaining a sensitivity of 0.77 and a specificity of 0.89 for tumors larger than 6 cm3 . CONCLUSIONS: The results found in this research clearly show that MRI tumor texture provides information that can be employed for predicting TTE. This can form a basis for individual VS treatment selection, further improving overall treatment results. Particularly in patients with large VSs, where the phenomenon of TTE is most relevant and our predictive model performs best, these findings can be implemented in a clinical workflow such that for each patient, the most optimal treatment strategy can be determined.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Neuroma Acústico/diagnóstico por imagem , Neuroma Acústico/radioterapia , Radiocirurgia , Carga Tumoral/efeitos da radiação , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
3.
Otol Neurotol ; 41(10): e1321-e1327, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33492808

RESUMO

OBJECTIVE: Stereotactic radiosurgery (SRS) is one of the treatment modalities for vestibular schwannomas (VSs). However, tumor progression can still occur after treatment. Currently, it remains unknown how to predict long-term SRS treatment outcome. This study investigates possible magnetic resonance imaging (MRI)-based predictors of long-term tumor control following SRS. STUDY DESIGN: Retrospective cohort study. SETTING: Tertiary referral center. PATIENTS: Analysis was performed on a database containing 735 patients with unilateral VS, treated with SRS between June 2002 and December 2014. Using strict volumetric criteria for long-term tumor control and tumor progression, a total of 85 patients were included for tumor texture analysis. INTERVENTION(S): All patients underwent SRS and had at least 2 years of follow-up. MAIN OUTCOME MEASURE(S): Quantitative tumor texture features were extracted from conventional MRI scans. These features were supplied to a machine learning stage to train prediction models. Prediction accuracy, sensitivity, specificity, and area under the receiver operating curve (AUC) are evaluated. RESULTS: Gray-level co-occurrence matrices, which capture statistics from specific MRI tumor texture features, obtained the best prediction scores: 0.77 accuracy, 0.71 sensitivity, 0.83 specificity, and 0.93 AUC. These prediction scores further improved to 0.83, 0.83, 0.82, and 0.99, respectively, for tumors larger than 5 cm. CONCLUSIONS: Results of this study show the feasibility of predicting the long-term SRS treatment response of VS tumors on an individual basis, using MRI-based tumor texture features. These results can be exploited for further research into creating a clinical decision support system, facilitating physicians, and patients to select a personalized optimal treatment strategy.


Assuntos
Neuroma Acústico , Radiocirurgia , Humanos , Imageamento por Ressonância Magnética , Neuroma Acústico/diagnóstico por imagem , Neuroma Acústico/cirurgia , Estudos Retrospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA