Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cancer Immunol Res ; 12(7): 814-821, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38631025

RESUMO

Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TIL) is effective in patients with melanoma, although long-term responses seem restricted in patients who have complete remissions. Many patients develop secondary resistance to TIL-ACT but the involved mechanisms are unclear. In this study, we describe a case of secondary resistance to TIL-ACT possibly due to intratumoral heterogeneity and selection of a resistant tumor cell clone by the transferred T cells. To the best our knowledge, this is the first case of clonal selection of a pre-existing nondominant tumor cell clone; this report demonstrates the mechanism involved in secondary resistance to TIL-ACT that can potentially change current clinical practice because it advocates for T-cell collection from multiple tumor sites and analysis of tumor heterogeneity before treatment with TIL-ACT.


Assuntos
Imunoterapia Adotiva , Linfócitos do Interstício Tumoral , Melanoma , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma/terapia , Melanoma/imunologia , Imunoterapia Adotiva/métodos , Masculino , Células Clonais , Feminino , Pessoa de Meia-Idade , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia
2.
Cell Mol Immunol ; 21(5): 495-509, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38448555

RESUMO

The overexpression of sialic acids on glycans, called hypersialylation, is a common alteration found in cancer cells. Sialylated glycans can enhance immune evasion by interacting with sialic acid-binding immunoglobulin-like lectin (Siglec) receptors on tumor-infiltrating immune cells. Here, we investigated the effect of sialylated glycans and their interaction with Siglec receptors on myeloid-derived suppressor cells (MDSCs). We found that MDSCs derived from the blood of lung cancer patients and tumor-bearing mice strongly express inhibitory Siglec receptors and are highly sialylated. In murine cancer models of emergency myelopoiesis, Siglec-E knockout in myeloid cells resulted in prolonged survival and increased tumor infiltration of activated T cells. Targeting suppressive myeloid cells by blocking Siglec receptors or desialylation strongly reduced their suppressive potential. We further identified CCL2 as a mediator involved in T-cell suppression upon interaction between sialoglycans and Siglec receptors on MDSCs. Our results demonstrated that sialylated glycans inhibit anticancer immunity by modulating CCL2 expression.


Assuntos
Quimiocina CCL2 , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides , Polissacarídeos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Animais , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Polissacarídeos/metabolismo , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Humanos , Quimiocina CCL2/metabolismo , Camundongos , Camundongos Knockout , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Ácido N-Acetilneuramínico/metabolismo
3.
Viruses ; 16(3)2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543705

RESUMO

As the COVID-19 pandemic revealed, rapid development of vaccines and therapeutic antibodies are crucial to guarantee a quick return to the status quo of society. In early 2020, we deployed our droplet microfluidic single-cell-based platform DROPZYLLA® for the generation of cognate antibody repertoires of convalescent COVID-19 donors. Discovery of SARS-CoV-2-specific antibodies was performed upon display of antibodies on the surface of HEK293T cells by antigen-specific sorting using binding to the SARS-CoV-2 spike and absence of binding to huACE2 as the sort criteria. This efficiently yielded antibodies within 3-6 weeks, of which up to 100% were neutralizing. One of these, MTX-COVAB, displaying low picomolar neutralization IC50 of SARS-CoV-2 and with a neutralization potency on par with the Regeneron antibodies, was selected for GMP manufacturing and clinical development in June 2020. MTX-COVAB showed strong efficacy in vivo and neutralized all identified clinically relevant variants of SARS-CoV-2 at the time of its selection. MTX-COVAB completed GMP manufacturing by the end of 2020, but clinical development was stopped when the Omicron variant emerged, a variant that proved to be detrimental to all monoclonal antibodies already approved. The present study describes the capabilities of the DROPZYLLA® platform to identify antibodies of high virus-neutralizing capacity rapidly and directly.


Assuntos
COVID-19 , Pandemias , Humanos , Células HEK293 , SARS-CoV-2/genética , Anticorpos Antivirais , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus
4.
Nat Commun ; 15(1): 993, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307904

RESUMO

The concept of precision cell therapy targeting tumor-specific mutations is appealing but requires surface-exposed neoepitopes, which is a rarity in cancer. B cell receptors (BCR) of mature lymphoid malignancies are exceptional in that they harbor tumor-specific-stereotyped sequences in the form of point mutations that drive self-engagement of the BCR and autologous signaling. Here, we use a BCR light chain neoepitope defined by a characteristic point mutation (IGLV3-21R110) for selective targeting of a poor-risk subset of chronic lymphocytic leukemia (CLL) with chimeric antigen receptor (CAR) T cells. We develop murine and humanized CAR constructs expressed in T cells from healthy donors and CLL patients that eradicate IGLV3-21R110 expressing cell lines and primary CLL cells, but neither cells expressing the non-pathogenic IGLV3-21G110 light chain nor polyclonal healthy B cells. In vivo experiments confirm epitope-selective cytolysis in xenograft models in female mice using engrafted IGLV3-21R110 expressing cell lines or primary CLL cells. We further demonstrate in two humanized mouse models lack of cytotoxicity towards human B cells. These data provide the basis for advanced approaches of resistance-preventive and biomarker-guided cellular targeting of functionally relevant lymphoma driver mutations sparing normal B cells.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Feminino , Camundongos , Animais , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/terapia , Linfócitos B , Mutação , Receptores de Antígenos de Linfócitos B/genética , Linfócitos T
5.
Front Immunol ; 14: 1291292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094289

RESUMO

Humans lack the enzyme that produces the sialic acid N-glycolyl neuraminic acid (Neu5Gc), but several lines of evidence have shown that Neu5Gc can be taken up by mammalian food sources and replace the common human sialic acid N-acetyl neuraminic acid (Neu5Ac) in glycans. Cancer tissue has been shown to have increased the presence of Neu5Gc and Neu5Gc-containing glycolipids such as the ganglioside GM3, which have been proposed as tumor-specific antigens for antibody treatment. Here, we show that a previously described antibody against Neu5Gc-GM3 is binding to Neu5GC-containing gangliosides and is strongly staining different cancer tissues. However, we also found a strong intracellular staining of keratinocytes of healthy skin. We confirmed this staining on freshly isolated keratinocytes by flow cytometry and detected Neu5Gc by mass spectrometry. This finding implicates that non-human Neu5Gc can be incorporated into gangliosides in human skin, and this should be taken into consideration when targeting Neu5Gc-containing gangliosides for cancer immunotherapy.


Assuntos
Neoplasias , Humanos , Antígenos de Neoplasias , Gangliosídeo G(M3)/química , Glicolipídeos , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/metabolismo , Pele/química , Pele/metabolismo
6.
Nat Commun ; 14(1): 86, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732507

RESUMO

Tumor-specific T cells are frequently exhausted by chronic antigenic stimulation. We here report on a human antigen-specific ex vivo model to explore new therapeutic options for T cell immunotherapies. T cells generated with this model resemble tumor-infiltrating exhausted T cells on a phenotypic and transcriptional level. Using a targeted pooled CRISPR-Cas9 screen and individual gene knockout validation experiments, we uncover sorting nexin-9 (SNX9) as a mediator of T cell exhaustion. Upon TCR/CD28 stimulation, deletion of SNX9 in CD8 T cells decreases PLCγ1, Ca2+, and NFATc2-mediated T cell signaling and reduces expression of NR4A1/3 and TOX. SNX9 knockout enhances memory differentiation and IFNγ secretion of adoptively transferred T cells and results in improved anti-tumor efficacy of human chimeric antigen receptor T cells in vivo. Our findings highlight that targeting SNX9 is a strategy to prevent T cell exhaustion and enhance anti-tumor immunity.


Assuntos
Neoplasias , Exaustão das Células T , Humanos , Linfócitos T CD8-Positivos , Imunoterapia , Linfócitos do Interstício Tumoral
7.
Front Plant Sci ; 10: 307, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30967884

RESUMO

Climate-induced tree mortality became a global phenomenon during the last century and it is expected to increase in many regions in the future along with a further increase in the frequency of drought and heat events. However, tree mortality at the ecosystem level remains challenging to quantify since long-term, tree-individual, reliable observations are scarce. Here, we present a unique data set of monitoring records from 276 permanent plots located in 95 forest stands across Switzerland, which include five major European tree species (Norway spruce, Scots pine, silver fir, European beech, and sessile and common oak) and cover a time span of over one century (1898-2013), with inventory periods of 5-10 years. The long-term average annual mortality rate of the investigated forest stands was 1.5%. In general, species-specific annual mortality rates did not consistently increase over the last decades, except for Scots pine forests at lower altitudes, which exhibited a clear increase of mortality since the 1960s. Temporal trends of tree mortality varied also depending on diameter at breast height (DBH), with large trees generally experiencing an increase in mortality, while mortality of small trees tended to decrease. Normalized mortality rates were remarkably similar between species and a modest, but a consistent and steady increasing trend was apparent throughout the study period. Mixed effects models revealed that gradually changing stand parameters (stand basal area and stand age) had the strongest impact on mortality rates, modulated by climate, which had increasing importance during the last decades. Hereby, recent climatic changes had highly variable effects on tree mortality rates, depending on the species in combination with abiotic and biotic stand and site conditions. This suggests that forest species composition and species ranges may change under future climate conditions. Our data set highlights the complexity of forest dynamical processes such as long-term, gradual changes of forest structure, demography and species composition, which together with climate determine mortality rates.

8.
Methods Mol Biol ; 1850: 79-111, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30242682

RESUMO

From the perspective of academic and small research laboratories, the most common and practical strategy for recombinant expression of full-length monoclonal antibodies is to perform transient plasmid transfection of mammalian cells, resulting in small-scale and limited protein production. The generation of stable antibody producing mammalian cell lines enables larger-scale and consistent expression, however this approach is rarely pursued due to the time-consuming and expensive process of single colony screening and characterization. In order to bridge the gap between the simplicity of transient transfection and consistent production by stable cell lines, we describe a method to stably integrate antibody genes into the endogenous immunogenomic loci of hybridoma cells using CRISPR/Cas9 genome editing. Initially, the antibody variable light (VL) chain is deleted by multiplexed Cas9 cleavage; subsequently, the variable heavy (VH) chain is replaced by a fluorescent reporter gene (mRuby) by Cas9-assisted homology-directed repair (HDR). This cell line is customized by replacing mRuby with a synthetic antibody (consisting of a VL, light constant region and VH) by once again using Cas9-assisted HDR. Due to hybridomas' inherent ability to surface display and secrete antibodies, they provide a suitable host for both the selection and the production process, substantially streamlining the process for stable cell line generation, and thus we refer to this platform as plug-and-(dis)play (PnP) hybridomas.


Assuntos
Edição de Genes/métodos , Hibridomas/metabolismo , Animais , Anticorpos Monoclonais , Sistemas CRISPR-Cas/genética , Linhagem Celular , Humanos
9.
Front Immunol ; 9: 1401, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29973938

RESUMO

High-throughput sequencing of immunoglobulin (Ig) repertoires (Ig-seq) is a powerful method for quantitatively interrogating B cell receptor sequence diversity. When applied to human repertoires, Ig-seq provides insight into fundamental immunological questions, and can be implemented in diagnostic and drug discovery projects. However, a major challenge in Ig-seq is ensuring accuracy, as library preparation protocols and sequencing platforms can introduce substantial errors and bias that compromise immunological interpretation. Here, we have established an approach for performing highly accurate human Ig-seq by combining synthetic standards with a comprehensive error and bias correction pipeline. First, we designed a set of 85 synthetic antibody heavy-chain standards (in vitro transcribed RNA) to assess correction workflow fidelity. Next, we adapted a library preparation protocol that incorporates unique molecular identifiers (UIDs) for error and bias correction which, when applied to the synthetic standards, resulted in highly accurate data. Finally, we performed Ig-seq on purified human circulating B cell subsets (naïve and memory), combined with a cellular replicate sampling strategy. This strategy enabled robust and reliable estimation of key repertoire features such as clonotype diversity, germline segment, and isotype subclass usage, and somatic hypermutation. We anticipate that our standards and error and bias correction pipeline will become a valuable tool for researchers to validate and improve accuracy in human Ig-seq studies, thus leading to potentially new insights and applications in human antibody repertoire profiling.

10.
Mol Ecol ; 26(4): 1190-1206, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28028891

RESUMO

The impact of climate change on the soil microbiome potentially alters the biogeochemical cycle of terrestrial ecosystems. In semi-arid environments, water availability is a major constraint on biogeochemical cycles due to the combination of high summer temperatures and low rainfall. Here, we explored how 10 years of irrigation of a water-limited pine forest in the central European Alps altered the soil microbiome and associated ecosystem functioning. A decade of irrigation stimulated tree growth, resulting in higher crown cover, larger yearly increments of tree biomass, increased litter fall and greater root biomass. Greater amounts of plant-derived inputs associated with increased primary production in the irrigated forest stands stimulated soil microbial activity coupled with pronounced shifts in the microbiome from largely oligotrophic to more copiotrophic lifestyles. Microbial groups benefitting from increased resource availabilities (litter, rhizodeposits) thrived under irrigation, leading to enhanced soil organic matter mineralization and carbon respired from irrigated soils. This unique long-term study provides new insights into the impact of precipitation changes on the soil microbiome and associated ecosystem functioning in a water-limited pine forest ecosystem and improves our understanding of the persistency of long-term soil carbon stocks in a changing climate.


Assuntos
Irrigação Agrícola , Florestas , Microbiota , Microbiologia do Solo , Biomassa , Carbono , Mudança Climática , Pinus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA