Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37375206

RESUMO

Muscat of Alexandria is one of the most aromatic grape cultivars, with a characteristic floral and fruity aroma, producing popular appellation of origin wines. The winemaking process is a critical factor contributing to the quality of the final product, so the aim of this work was to study metabolomic changes during the fermentation of grape musts at the industrial level from 11 tanks, 2 vintages, and 3 wineries of Limnos Island. A Headspace Solid-Phase Microextraction (HS-SPME) and a liquid injection with Trimethylsilyl (TMS) derivatization Gas Chromatography-Mass Spectrometry (GC-MS) methods were applied for the profiling of the main volatile and non-volatile polar metabolites originating from grapes or produced during winemaking, resulting in the identification of 109 and 69 metabolites, respectively. Multivariate statistical analysis models revealed the differentiation between the four examined time points during fermentation, and the most statistically significant metabolites were investigated by biomarker assessment, while their trends were presented with boxplots. Whilst the majority of compounds (ethyl esters, alcohols, acids, aldehydes, sugar alcohols) showed an upward trend, fermentable sugars, amino acids, and C6-compounds were decreased. Terpenes presented stable behavior, with the exception of terpenols, which were increased at the beginning and were then decreased after the 5th day of fermentation.


Assuntos
Vitis , Compostos Orgânicos Voláteis , Vinho , Vitis/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Fermentação , Microextração em Fase Sólida/métodos , Omã , Vinho/análise , Odorantes/análise , Compostos Orgânicos Voláteis/análise
2.
Metabolites ; 12(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35208191

RESUMO

A headspace-solid phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) method was developed herein for the analysis of virgin olive oil volatile metabolome. Optimisation of SPME conditions was performed by Design of Experiments (DoE) and Response Surface Methodology (RSM) approaches and factors, such as sample volume, sample stirring, extraction temperature and time, and desorption temperature and time, were examined to reach optimal microextraction conditions. The potential of the optimised method was then investigated for its use in the classification of Cretan virgin olive oil samples with the aid of multivariate statistical analysis. Certain markers were identified with significance in the geographical classification of Cretan extra-virgin olive oil (EVOO) samples. In total, 92 volatile organic compounds were tentatively identified and semi-quantified, and the data obtained confirm that the method is robust, reliable, and analytically powerful for olive oil classification.

3.
Food Control ; 122: 107800, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33281304

RESUMO

This study provides an important insight into the response of food safety systems during the first months of the pandemic, elevating the perspective of preventing Covid-19 within conventional food safety management systems. A multi-country survey was conducted in 16 countries involving 825 food companies. Based on the results of the survey, it is obvious that the level of maturity of a food safety system in place is the main trigger in classifying companies and their responses to the pandemic challenge. Staff awareness and hygiene are the two most important attributes in combating Covid-19, opposed to temperature checking of workers in food establishment and health protocols from the World Health Organization, recognized as attributes with limited salience and importance. Companies confirmed implementation of more restrictive hygiene procedures during the pandemic and the need for purchasing more additional personal protective equipment. Retailers were identified as the food supply chain link mostly affected by the pandemic opposed to food storage facilities ranked as least affected. During this challenging period, all companies declared that food safety has not been compromised at any moment. It is important to note that less than a half of the food companies had documented any emergency plans associated with pandemics and health issues in place.

4.
Foods ; 9(9)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899587

RESUMO

Cereals have been one of the major food resources for human diets and animal feed for thousands of years, and a large quantity of by-products is generated throughout the entire processing food chain, from farm to fork. These by-products mostly consist of the germ and outer layers (bran) derived from dry and wet milling of the grains, of the brewers' spent grain generated in the brewing industry, or comprise other types obtained from the breadmaking and starch production industries. Cereal processing by-products are an excellent low-cost source of various compounds such as dietary fibres, proteins, carbohydrates and sugars, minerals and antioxidants (such as polyphenols and vitamins), among others. Often, they are downgraded and end up as waste or, in the best case, are used as animal feed or fertilizers. With the increase in world population coupled with the growing awareness about environmental sustainability and healthy life-styles and well-being, the interest of the industry and the global market to provide novel, sustainable and innovative solutions for the management of cereal-based by-products is also growing rapidly. In that respect, these promising materials can be valorised by applying various biotechnological techniques, thus leading to numerous economic and environmental advantages as well as important opportunities towards new product development (NPD) in the food and feed industry and other types such as chemical, packaging, nutraceutical (dietary supplements and food additives), cosmetic and pharmaceutical industries. This review aims at giving a scientific overview of the potential and the latest advances on the valorisation of cereal-based by-products and wastes. We intended it to be a reference document for scientists, technicians and all those chasing new research topics and opportunities to explore cereal-based by-products through a circular economy approach.

5.
Food Funct ; 3(3): 312-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22298029

RESUMO

Oil-in-water emulsions (10% w/w n-tetradecane) were prepared at pH = 5.7 by using, as surface active agents, electrostatically formed complexes of sodium stearoyl lactylate (SSL) at a concentration of 0.4% (w/w) and chitosan (CH) in a concentration range between 0 and 0.48% w/w. The use of complexes in emulsions with a low concentration of CH (<0.24% w/w) resulted in highly flocculated systems; instead, with increased level of CH, the emulsions had a smaller average droplet size and exhibited greater stability during storage. Emulsions stabilised by SSL/CH complexes showed non-Newtonian flow behavior with pronounced shear thinning. Among all formulations studied none showed a gel-like behavior since in all cases the G' (storage modulus) was lower that G'' (loss modulus). Adsorption kinetics of pure SSL and SSL/CH complexes to the oil/water interfaces were evaluated using an automated drop tensiometer (ADT). Even though complexation of SSL with CH resulted in a delay of the adsorption of the surface active species at the oil/water interface, the inclusion of the polysaccharide resulted in substantially improved interfacial properties as indicated by a significant increase of the dilatational modulus. Furthermore, the enhanced interfacial properties of the emulsion droplets resulted in improved stability against freeze-thaw cycling. The results of this study may facilitate the development of frozen food products such as desserts with an ameliorated stability and favorable sensorial characteristics.


Assuntos
Quitosana/química , Emulsões/química , Tensoativos/química , Adsorção , Cinética , Tamanho da Partícula
6.
Meat Sci ; 82(3): 338-45, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20416718

RESUMO

Antimicrobial films were prepared by incorporating different levels of oregano oil (0.5%, 1.0%, and 1.5% w/w in the film forming solution) into sorbitol-plasticized whey protein isolate (WPI) films. The moisture uptake behavior and the water vapor permeability (WVP) were not affected by the addition of oregano oil at any of the concentrations used. A reduction of the glass transition temperature (∼10-20°C), as determined by dynamic mechanical thermal analysis (DMTA), was caused by addition of oil into the protein matrix. A decrease of Young modulus (E) and maximum tensile strength (σ(max)) accompanied with an increase in elongation at break (%EB) was observed with increasing oil concentration up to a level of 1.0% (w/w). Wrapping of beef cuts with the antimicrobial films resulted in smaller changes in total color difference (ΔΕ) and saturation difference (Δ(chroma)) during refrigeration (5°C, 12days). The maximum specific growth rate (µ(max)) of total flora (total viable count, TVC) and pseudomonads were significantly reduced (P<0.05) by a factor of two with the use of antimicrobial films (1.5% w/w oil in the film forming solution), while the growth of lactic acid bacteria was completely inhibited. These results pointed to the effectiveness of oregano oil containing whey protein films to increase the shelf life of fresh beef.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA