Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Science ; 379(6636): eadd9330, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36893230

RESUMO

Brains contain networks of interconnected neurons and so knowing the network architecture is essential for understanding brain function. We therefore mapped the synaptic-resolution connectome of an entire insect brain (Drosophila larva) with rich behavior, including learning, value computation, and action selection, comprising 3016 neurons and 548,000 synapses. We characterized neuron types, hubs, feedforward and feedback pathways, as well as cross-hemisphere and brain-nerve cord interactions. We found pervasive multisensory and interhemispheric integration, highly recurrent architecture, abundant feedback from descending neurons, and multiple novel circuit motifs. The brain's most recurrent circuits comprised the input and output neurons of the learning center. Some structural features, including multilayer shortcuts and nested recurrent loops, resembled state-of-the-art deep learning architectures. The identified brain architecture provides a basis for future experimental and theoretical studies of neural circuits.


Assuntos
Encéfalo , Conectoma , Drosophila melanogaster , Rede Nervosa , Animais , Encéfalo/ultraestrutura , Neurônios/ultraestrutura , Sinapses/ultraestrutura , Drosophila melanogaster/ultraestrutura , Rede Nervosa/ultraestrutura
3.
Elife ; 112022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36305588

RESUMO

Learning which stimuli (classical conditioning) or which actions (operant conditioning) predict rewards or punishments can improve chances of survival. However, the circuit mechanisms that underlie distinct types of associative learning are still not fully understood. Automated, high-throughput paradigms for studying different types of associative learning, combined with manipulation of specific neurons in freely behaving animals, can help advance this field. The Drosophila melanogaster larva is a tractable model system for studying the circuit basis of behaviour, but many forms of associative learning have not yet been demonstrated in this animal. Here, we developed a high-throughput (i.e. multi-larva) training system that combines real-time behaviour detection of freely moving larvae with targeted opto- and thermogenetic stimulation of tracked animals. Both stimuli are controlled in either open- or closed-loop, and delivered with high temporal and spatial precision. Using this tracker, we show for the first time that Drosophila larvae can perform classical conditioning with no overlap between sensory stimuli (i.e. trace conditioning). We also demonstrate that larvae are capable of operant conditioning by inducing a bend direction preference through optogenetic activation of reward-encoding serotonergic neurons. Our results extend the known associative learning capacities of Drosophila larvae. Our automated training rig will facilitate the study of many different forms of associative learning and the identification of the neural circuits that underpin them.


Assuntos
Condicionamento Operante , Drosophila , Animais , Condicionamento Operante/fisiologia , Drosophila/fisiologia , Larva/fisiologia , Drosophila melanogaster/fisiologia , Condicionamento Clássico/fisiologia
4.
Neural Dev ; 17(1): 8, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002881

RESUMO

Molecular profiles of neurons influence neural development and function but bridging the gap between genes, circuits, and behavior has been very difficult. Here we used single cell RNAseq to generate a complete gene expression atlas of the Drosophila larval central nervous system composed of 131,077 single cells across three developmental stages (1 h, 24 h and 48 h after hatching). We identify 67 distinct cell clusters based on the patterns of gene expression. These include 31 functional mature larval neuron clusters, 1 ring gland cluster, 8 glial clusters, 6 neural precursor clusters, and 13 developing immature adult neuron clusters. Some clusters are present across all stages of larval development, while others are stage specific (such as developing adult neurons). We identify genes that are differentially expressed in each cluster, as well as genes that are differentially expressed at distinct stages of larval life. These differentially expressed genes provide promising candidates for regulating the function of specific neuronal and glial types in the larval nervous system, or the specification and differentiation of adult neurons. The cell transcriptome Atlas of the Drosophila larval nervous system is a valuable resource for developmental biology and systems neuroscience and provides a basis for elucidating how genes regulate neural development and function.


Assuntos
Drosophila , Transcriptoma , Animais , Regulação da Expressão Gênica no Desenvolvimento , Larva , Neuroglia , Neurônios
5.
Neural Dev ; 17(1): 7, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002894

RESUMO

The mechanisms that generate neural diversity during development remains largely unknown. Here, we use scRNA-seq methodology to discover new features of the Drosophila larval CNS across several key developmental timepoints. We identify multiple progenitor subtypes - both stem cell-like neuroblasts and intermediate progenitors - that change gene expression across larval development, and report on new candidate markers for each class of progenitors. We identify a pool of quiescent neuroblasts in newly hatched larvae and show that they are transcriptionally primed to respond to the insulin signaling pathway to exit from quiescence, including relevant pathway components in the adjacent glial signaling cell type. We identify candidate "temporal transcription factors" (TTFs) that are expressed at different times in progenitor lineages. Our work identifies many cell type specific genes that are candidates for functional roles, and generates new insight into the differentiation trajectory of larval neurons.


Assuntos
Proteínas de Drosophila , Células-Tronco Neurais , Animais , Linhagem da Célula/fisiologia , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Larva , Células-Tronco Neurais/fisiologia , Análise de Sequência de RNA
6.
Elife ; 102021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34755599

RESUMO

Animal behavior is shaped both by evolution and by individual experience. Parallel brain pathways encode innate and learned valences of cues, but the way in which they are integrated during action-selection is not well understood. We used electron microscopy to comprehensively map with synaptic resolution all neurons downstream of all mushroom body (MB) output neurons (encoding learned valences) and characterized their patterns of interaction with lateral horn (LH) neurons (encoding innate valences) in Drosophila larva. The connectome revealed multiple convergence neuron types that receive convergent MB and LH inputs. A subset of these receives excitatory input from positive-valence MB and LH pathways and inhibitory input from negative-valence MB pathways. We confirmed functional connectivity from LH and MB pathways and behavioral roles of two of these neurons. These neurons encode integrated odor value and bidirectionally regulate turning. Based on this, we speculate that learning could potentially skew the balance of excitation and inhibition onto these neurons and thereby modulate turning. Together, our study provides insights into the circuits that integrate learned and innate valences to modify behavior.


Assuntos
Drosophila melanogaster/fisiologia , Corpos Pedunculados/fisiologia , Neurônios/fisiologia , Animais , Encéfalo/fisiologia , Conectoma , Drosophila melanogaster/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia , Aprendizagem/fisiologia
7.
F1000Res ; 10: 258, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504683

RESUMO

Techniques for calcium imaging were first demonstrated in the mid-1970s, whilst tools to analyse these markers of cellular activity are still being developed and improved today. For image analysis, custom tools were developed within labs and until relatively recently, software packages were not widely available between researchers. We will discuss some of the most popular methods for calcium imaging analysis that are now widely available and describe why these protocols are so effective. We will also describe some of the newest innovations in the field that are likely to benefit researchers, particularly as calcium imaging is often an inherently low signal-to-noise method. Although calcium imaging analysis has seen recent advances, particularly following the rise of machine learning, we will end by highlighting the outstanding requirements and questions that hinder further progress and pose the question of how far we have come in the past sixty years and what can be expected for future development in the field.


Assuntos
Cálcio , Processamento de Imagem Assistida por Computador , Diagnóstico por Imagem , Aprendizado de Máquina
8.
Neuron ; 109(1): 105-122.e7, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33120017

RESUMO

The mechanisms by which synaptic partners recognize each other and establish appropriate numbers of connections during embryonic development to form functional neural circuits are poorly understood. We combined electron microscopy reconstruction, functional imaging of neural activity, and behavioral experiments to elucidate the roles of (1) partner identity, (2) location, and (3) activity in circuit assembly in the embryonic nerve cord of Drosophila. We found that postsynaptic partners are able to find and connect to their presynaptic partners even when these have been shifted to ectopic locations or silenced. However, orderly positioning of axon terminals by positional cues and synaptic activity is required for appropriate numbers of connections between specific partners, for appropriate balance between excitatory and inhibitory connections, and for appropriate functional connectivity and behavior. Our study reveals with unprecedented resolution the fine connectivity effects of multiple factors that work together to control the assembly of neural circuits.


Assuntos
Conectoma/métodos , Interneurônios/metabolismo , Rede Nervosa/metabolismo , Sinapses/metabolismo , Animais , Animais Geneticamente Modificados , Drosophila melanogaster , Interneurônios/química , Rede Nervosa/química , Optogenética/métodos , Sinapses/química , Sinapses/genética
9.
Curr Opin Neurobiol ; 65: 129-137, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33242722

RESUMO

The larva of Drosophila melanogaster is emerging as a powerful model system for comprehensive brain-wide understanding of the circuit implementation of neural computations. With an unprecedented amount of tools in hand, including synaptic-resolution connectomics, whole-brain imaging, and genetic tools for selective targeting of single neuron types, it is possible to dissect which circuits and computations are at work behind behaviors that have an interesting level of complexity. Here we present some of the recent advances regarding multisensory integration, learning, and action selection in Drosophila larva.


Assuntos
Conectoma , Animais , Sistema Nervoso Central , Drosophila , Drosophila melanogaster , Larva
10.
J Neurosci ; 40(31): 5990-6006, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32586949

RESUMO

An adaptive transition from exploring the environment in search of vital resources to exploiting these resources once the search was successful is important to all animals. Here we study the neuronal circuitry that allows larval Drosophila melanogaster of either sex to negotiate this exploration-exploitation transition. We do so by combining Pavlovian conditioning with high-resolution behavioral tracking, optogenetic manipulation of individually identified neurons, and EM data-based analyses of synaptic organization. We find that optogenetic activation of the dopaminergic neuron DAN-i1 can both establish memory during training and acutely terminate learned search behavior in a subsequent recall test. Its activation leaves innate behavior unaffected, however. Specifically, DAN-i1 activation can establish associative memories of opposite valence after paired and unpaired training with odor, and its activation during the recall test can terminate the search behavior resulting from either of these memories. Our results further suggest that in its behavioral significance DAN-i1 activation resembles, but does not equal, sugar reward. Dendrogram analyses of all the synaptic connections between DAN-i1 and its two main targets, the Kenyon cells and the mushroom body output neuron MBON-i1, further suggest that the DAN-i1 signals during training and during the recall test could be delivered to the Kenyon cells and to MBON-i1, respectively, within previously unrecognized, locally confined branching structures. This would provide an elegant circuit motif to terminate search on its successful completion.SIGNIFICANCE STATEMENT In the struggle for survival, animals have to explore their environment in search of food. Once food is found, however, it is adaptive to prioritize exploiting it over continuing a search that would now be as pointless as searching for the glasses you are wearing. This exploration-exploitation trade-off is important for animals and humans, as well as for technical search devices. We investigate which of the only 10,000 neurons of a fruit fly larva can tip the balance in this trade-off, and identify a single dopamine neuron called DAN-i1 that can do so. Given the similarities in dopamine neuron function across the animal kingdom, this may reflect a general principle of how search is terminated once it is successful.


Assuntos
Aprendizagem por Associação/fisiologia , Comportamento Animal/fisiologia , Neurônios Dopaminérgicos/fisiologia , Memória/fisiologia , Animais , Condicionamento Clássico , Drosophila melanogaster , Feminino , Masculino , Rememoração Mental/fisiologia , Corpos Pedunculados/fisiologia , Optogenética , Desempenho Psicomotor/fisiologia , Olfato/fisiologia , Sinapses/fisiologia
11.
Nat Neurosci ; 23(4): 544-555, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32203499

RESUMO

Dopaminergic neurons (DANs) drive learning across the animal kingdom, but the upstream circuits that regulate their activity and thereby learning remain poorly understood. We provide a synaptic-resolution connectome of the circuitry upstream of all DANs in a learning center, the mushroom body of Drosophila larva. We discover afferent sensory pathways and a large population of neurons that provide feedback from mushroom body output neurons and link distinct memory systems (aversive and appetitive). We combine this with functional studies of DANs and their presynaptic partners and with comprehensive circuit modeling. We find that DANs compare convergent feedback from aversive and appetitive systems, which enables the computation of integrated predictions that may improve future learning. Computational modeling reveals that the discovered feedback motifs increase model flexibility and performance on learning tasks. Our study provides the most detailed view to date of biological circuit motifs that support associative learning.


Assuntos
Aprendizagem/fisiologia , Memória/fisiologia , Corpos Pedunculados/fisiologia , Animais , Neurônios Dopaminérgicos/fisiologia , Drosophila/fisiologia , Larva , Modelos Neurológicos , Vias Neurais/fisiologia
12.
PLoS Genet ; 16(2): e1008589, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32059010

RESUMO

Nervous systems have the ability to select appropriate actions and action sequences in response to sensory cues. The circuit mechanisms by which nervous systems achieve choice, stability and transitions between behaviors are still incompletely understood. To identify neurons and brain areas involved in controlling these processes, we combined a large-scale neuronal inactivation screen with automated action detection in response to a mechanosensory cue in Drosophila larva. We analyzed behaviors from 2.9x105 larvae and identified 66 candidate lines for mechanosensory responses out of which 25 for competitive interactions between actions. We further characterize in detail the neurons in these lines and analyzed their connectivity using electron microscopy. We found the neurons in the mechanosensory network are located in different regions of the nervous system consistent with a distributed model of sensorimotor decision-making. These findings provide the basis for understanding how selection and transition between behaviors are controlled by the nervous system.


Assuntos
Potenciais de Ação/fisiologia , Ligação Competitiva , Mecanotransdução Celular/fisiologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Células Receptoras Sensoriais/fisiologia , Transmissão Sináptica/fisiologia , Animais , Animais Geneticamente Modificados , Ligação Competitiva/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Mapeamento Encefálico , Sinais (Psicologia) , Drosophila melanogaster/genética , Vias Neurais/metabolismo , Neurônios/metabolismo , Fenótipo
13.
Curr Biol ; 29(4): 554-566.e4, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30744969

RESUMO

Animals use sensory information to move toward more favorable conditions. Drosophila larvae can move up or down gradients of odors (chemotax), light (phototax), and temperature (thermotax) by modulating the probability, direction, and size of turns based on sensory input. Whether larvae can anemotax in gradients of mechanosensory cues is unknown. Further, although many of the sensory neurons that mediate taxis have been described, the central circuits are not well understood. Here, we used high-throughput, quantitative behavioral assays to demonstrate Drosophila larvae anemotax in gradients of wind speeds and to characterize the behavioral strategies involved. We found that larvae modulate the probability, direction, and size of turns to move away from higher wind speeds. This suggests that similar central decision-making mechanisms underlie taxis in somatosensory and other sensory modalities. By silencing the activity of single or very few neuron types in a behavioral screen, we found two sensory (chordotonal and multidendritic class III) and six nerve cord neuron types involved in anemotaxis. We reconstructed the identified neurons in an electron microscopy volume that spans the entire larval nervous system and found they received direct input from the mechanosensory neurons or from each other. In this way, we identified local interneurons and first- and second-order subesophageal zone (SEZ) and brain projection neurons. Finally, silencing a dopaminergic brain neuron type impairs anemotaxis. These findings suggest that anemotaxis involves both nerve cord and brain circuits. The candidate neurons and circuitry identified in our study provide a basis for future detailed mechanistic understanding of the circuit principles of anemotaxis.


Assuntos
Drosophila/fisiologia , Resposta Táctica/fisiologia , Vento , Movimentos do Ar , Animais , Drosophila/crescimento & desenvolvimento , Larva/fisiologia , Células Receptoras Sensoriais/fisiologia
14.
Elife ; 72018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30465650

RESUMO

Sensory navigation results from coordinated transitions between distinct behavioral programs. During chemotaxis in the Drosophila melanogaster larva, the detection of positive odor gradients extends runs while negative gradients promote stops and turns. This algorithm represents a foundation for the control of sensory navigation across phyla. In the present work, we identified an olfactory descending neuron, PDM-DN, which plays a pivotal role in the organization of stops and turns in response to the detection of graded changes in odor concentrations. Artificial activation of this descending neuron induces deterministic stops followed by the initiation of turning maneuvers through head casts. Using electron microscopy, we reconstructed the main pathway that connects the PDM-DN neuron to the peripheral olfactory system and to the pre-motor circuit responsible for the actuation of forward peristalsis. Our results set the stage for a detailed mechanistic analysis of the sensorimotor conversion of graded olfactory inputs into action selection to perform goal-oriented navigation.


Assuntos
Comportamento Animal , Quimiotaxia , Drosophila melanogaster/citologia , Córtex Sensório-Motor/fisiologia , Animais , Bioensaio , Testes Genéticos , Larva/citologia , Locomoção/fisiologia , Atividade Motora/fisiologia , Neurônios Motores/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Neurônios Receptores Olfatórios/ultraestrutura , Optogenética , Peristaltismo , Fenótipo , Olfato/fisiologia
15.
Nat Commun ; 9(1): 1104, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29549237

RESUMO

The brain adaptively integrates present sensory input, past experience, and options for future action. The insect mushroom body exemplifies how a central brain structure brings about such integration. Here we use a combination of systematic single-cell labeling, connectomics, transgenic silencing, and activation experiments to study the mushroom body at single-cell resolution, focusing on the behavioral architecture of its input and output neurons (MBINs and MBONs), and of the mushroom body intrinsic APL neuron. Our results reveal the identity and morphology of almost all of these 44 neurons in stage 3 Drosophila larvae. Upon an initial screen, functional analyses focusing on the mushroom body medial lobe uncover sparse and specific functions of its dopaminergic MBINs, its MBONs, and of the GABAergic APL neuron across three behavioral tasks, namely odor preference, taste preference, and associative learning between odor and taste. Our results thus provide a cellular-resolution study case of how brains organize behavior.


Assuntos
Drosophila/fisiologia , Corpos Pedunculados/fisiologia , Neurônios/fisiologia , Animais , Comportamento Animal , Drosophila/citologia , Drosophila/crescimento & desenvolvimento , Feminino , Larva/crescimento & desenvolvimento , Larva/fisiologia , Aprendizagem , Masculino , Recompensa , Olfato , Paladar
16.
Elife ; 72018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29528286

RESUMO

Rapid and efficient escape behaviors in response to noxious sensory stimuli are essential for protection and survival. Yet, how noxious stimuli are transformed to coordinated escape behaviors remains poorly understood. In Drosophila larvae, noxious stimuli trigger sequential body bending and corkscrew-like rolling behavior. We identified a population of interneurons in the nerve cord of Drosophila, termed Down-and-Back (DnB) neurons, that are activated by noxious heat, promote nociceptive behavior, and are required for robust escape responses to noxious stimuli. Electron microscopic circuit reconstruction shows that DnBs are targets of nociceptive and mechanosensory neurons, are directly presynaptic to pre-motor circuits, and link indirectly to Goro rolling command-like neurons. DnB activation promotes activity in Goro neurons, and coincident inactivation of Goro neurons prevents the rolling sequence but leaves intact body bending motor responses. Thus, activity from nociceptors to DnB interneurons coordinates modular elements of nociceptive escape behavior.


Assuntos
Comportamento Animal/fisiologia , Drosophila melanogaster/fisiologia , Interneurônios/fisiologia , Nociceptores/fisiologia , Animais , Drosophila melanogaster/genética , Vias Eferentes/fisiologia , Reação de Fuga/fisiologia , Larva/fisiologia
17.
Nat Commun ; 9(1): 1260, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593252

RESUMO

To integrate changing environmental cues with high spatial and temporal resolution is critical for animals to orient themselves. Drosophila larvae show an effective motor program to navigate away from light sources. How the larval visual circuit processes light stimuli to control navigational decision remains unknown. The larval visual system is composed of two sensory input channels, Rhodopsin5 (Rh5) and Rhodopsin6 (Rh6) expressing photoreceptors (PRs). We here characterize how spatial and temporal information are used to control navigation. Rh6-PRs are required to perceive temporal changes of light intensity during head casts, while Rh5-PRs are required to control behaviors that allow navigation in response to spatial cues. We characterize how distinct behaviors are modulated and identify parallel acting and converging features of the visual circuit. Functional features of the larval visual circuit highlight the principle of how early in a sensory circuit distinct behaviors may be computed by partly overlapping sensory pathways.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Células Fotorreceptoras de Invertebrados/fisiologia , Rodopsina/fisiologia , Navegação Espacial , Animais , Comportamento Animal , Sinais (Psicologia) , Drosophila/embriologia , Larva/fisiologia , Lasers , Luz , Fototaxia , Probabilidade , Fatores de Tempo , Visão Ocular
18.
Neuron ; 96(6): 1373-1387.e6, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29198754

RESUMO

Animals adaptively respond to a tactile stimulus by choosing an ethologically relevant behavior depending on the location of the stimuli. Here, we investigate how somatosensory inputs on different body segments are linked to distinct motor outputs in Drosophila larvae. Larvae escape by backward locomotion when touched on the head, while they crawl forward when touched on the tail. We identify a class of segmentally repeated second-order somatosensory interneurons, that we named Wave, whose activation in anterior and posterior segments elicit backward and forward locomotion, respectively. Anterior and posterior Wave neurons extend their dendrites in opposite directions to receive somatosensory inputs from the head and tail, respectively. Downstream of anterior Wave neurons, we identify premotor circuits including the neuron A03a5, which together with Wave, is necessary for the backward locomotion touch response. Thus, Wave neurons match their receptive field to appropriate motor programs by participating in different circuits in different segments.


Assuntos
Encéfalo/fisiologia , Locomoção/fisiologia , Neurônios/fisiologia , Tato/fisiologia , Animais , Animais Geneticamente Modificados , Encéfalo/ultraestrutura , Cálcio/metabolismo , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Larva/fisiologia , Locomoção/genética , Masculino , Microscopia Eletrônica , Neurônios/ultraestrutura , Neurotransmissores/metabolismo , Optogenética , Estimulação Física , Interferência de RNA/fisiologia , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
19.
Nature ; 548(7666): 175-182, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28796202

RESUMO

Associating stimuli with positive or negative reinforcement is essential for survival, but a complete wiring diagram of a higher-order circuit supporting associative memory has not been previously available. Here we reconstruct one such circuit at synaptic resolution, the Drosophila larval mushroom body. We find that most Kenyon cells integrate random combinations of inputs but that a subset receives stereotyped inputs from single projection neurons. This organization maximizes performance of a model output neuron on a stimulus discrimination task. We also report a novel canonical circuit in each mushroom body compartment with previously unidentified connections: reciprocal Kenyon cell to modulatory neuron connections, modulatory neuron to output neuron connections, and a surprisingly high number of recurrent connections between Kenyon cells. Stereotyped connections found between output neurons could enhance the selection of learned behaviours. The complete circuit map of the mushroom body should guide future functional studies of this learning and memory centre.


Assuntos
Encéfalo/citologia , Encéfalo/fisiologia , Conectoma , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Memória/fisiologia , Animais , Retroalimentação Fisiológica , Feminino , Larva/citologia , Larva/fisiologia , Corpos Pedunculados/citologia , Corpos Pedunculados/fisiologia , Vias Neurais , Sinapses/metabolismo
20.
J Exp Biol ; 220(Pt 13): 2452-2475, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28679796

RESUMO

Mapping brain function to brain structure is a fundamental task for neuroscience. For such an endeavour, the Drosophila larva is simple enough to be tractable, yet complex enough to be interesting. It features about 10,000 neurons and is capable of various taxes, kineses and Pavlovian conditioning. All its neurons are currently being mapped into a light-microscopical atlas, and Gal4 strains are being generated to experimentally access neurons one at a time. In addition, an electron microscopic reconstruction of its nervous system seems within reach. Notably, this electron microscope-based connectome is being drafted for a stage 1 larva - because stage 1 larvae are much smaller than stage 3 larvae. However, most behaviour analyses have been performed for stage 3 larvae because their larger size makes them easier to handle and observe. It is therefore warranted to either redo the electron microscopic reconstruction for a stage 3 larva or to survey the behavioural faculties of stage 1 larvae. We provide the latter. In a community-based approach we called the Ol1mpiad, we probed stage 1 Drosophila larvae for free locomotion, feeding, responsiveness to substrate vibration, gentle and nociceptive touch, burrowing, olfactory preference and thermotaxis, light avoidance, gustatory choice of various tastants plus odour-taste associative learning, as well as light/dark-electric shock associative learning. Quantitatively, stage 1 larvae show lower scores in most tasks, arguably because of their smaller size and lower speed. Qualitatively, however, stage 1 larvae perform strikingly similar to stage 3 larvae in almost all cases. These results bolster confidence in mapping brain structure and behaviour across developmental stages.


Assuntos
Comportamento Animal , Drosophila melanogaster/fisiologia , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA