Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nucleic Acids Res ; 51(D1): D678-D689, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36350631

RESUMO

The National Institute of Allergy and Infectious Diseases (NIAID) established the Bioinformatics Resource Center (BRC) program to assist researchers with analyzing the growing body of genome sequence and other omics-related data. In this report, we describe the merger of the PAThosystems Resource Integration Center (PATRIC), the Influenza Research Database (IRD) and the Virus Pathogen Database and Analysis Resource (ViPR) BRCs to form the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) https://www.bv-brc.org/. The combined BV-BRC leverages the functionality of the bacterial and viral resources to provide a unified data model, enhanced web-based visualization and analysis tools, bioinformatics services, and a powerful suite of command line tools that benefit the bacterial and viral research communities.


Assuntos
Genômica , Software , Vírus , Humanos , Bactérias/genética , Biologia Computacional , Bases de Dados Genéticas , Influenza Humana , Vírus/genética
2.
Front Bioinform ; 2: 1020189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36353215

RESUMO

Since the beginning of the COVID-19 pandemic, SARS-CoV-2 has demonstrated its ability to rapidly and continuously evolve, leading to the emergence of thousands of different sequence variants, many with distinctive phenotypic properties. Fortunately, the broad application of next generation sequencing (NGS) across the globe has produced a wealth of SARS-CoV-2 genome sequences, offering a comprehensive picture of how this virus is evolving so that accurate diagnostics, reliable therapeutics, and prophylactic vaccines against COVID-19 can be developed and maintained. The millions of SARS-CoV-2 sequences deposited into genomic sequencing databases, including GenBank, BV-BRC, and GISAID, are annotated with the dates and geographic locations of sample collection, and can be aligned to and compared with the Wuhan-Hu-1 reference genome to extract their constellation of nucleotide and amino acid substitutions. By aggregating these data into concise datasets, the spread of variants through space and time can be assessed. Variant tracking efforts have initially focused on the Spike protein due to its critical role in viral tropism and antibody neutralization. To identify emerging variants of concern as early as possible, we developed a computational pipeline to process the genomic data and assign risk scores based on both epidemiological and functional parameters. Epidemiological dynamics are used to identify variants exhibiting substantial growth over time and spread across geographical regions. Experimental data that quantify Spike protein regions targeted by adaptive immunity and critical for other virus characteristics are used to predict variants with consequential immunogenic and pathogenic impacts. The growth assessment and functional impact scores are combined to produce a Composite Score for any set of Spike substitutions detected. With this systematic method to routinely score and rank emerging variants, we have established an approach to identify threatening variants early and prioritize them for experimental evaluation.

3.
Virology ; 570: 123-133, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35398776

RESUMO

The current outbreak of coronavirus disease-2019 (COVID-19) caused by SARS-CoV-2 poses unparalleled challenges to global public health. SARS-CoV-2 is a Betacoronavirus, one of four genera belonging to the Coronaviridae subfamily Orthocoronavirinae. Coronaviridae, in turn, are members of the order Nidovirales, a group of enveloped, positive-stranded RNA viruses. Here we present a systematic phylogenetic and evolutionary study based on protein domain architecture, encompassing the entire proteomes of all Orthocoronavirinae, as well as other Nidovirales. This analysis has revealed that the genomic evolution of Nidovirales is associated with extensive gains and losses of protein domains. In Orthocoronavirinae, the sections of the genomes that show the largest divergence in protein domains are found in the proteins encoded in the amino-terminal end of the polyprotein (PP1ab), the spike protein (S), and many of the accessory proteins. The diversity among the accessory proteins is particularly striking, as each subgenus possesses a set of accessory proteins that is almost entirely specific to that subgenus. The only notable exception to this is ORF3b, which is present and orthologous over all Alphacoronaviruses. In contrast, the membrane protein (M), envelope small membrane protein (E), nucleoprotein (N), as well as proteins encoded in the central and carboxy-terminal end of PP1ab (such as the 3C-like protease, RNA-dependent RNA polymerase, and Helicase) show stable domain architectures across all Orthocoronavirinae. This comprehensive analysis of the Coronaviridae domain architecture has important implication for efforts to develop broadly cross-protective coronavirus vaccines.


Assuntos
COVID-19 , Coronaviridae , Nidovirales , Coronaviridae/genética , Evolução Molecular , Humanos , Proteínas de Membrana/genética , Nidovirales/genética , Filogenia , SARS-CoV-2/genética
4.
Virology ; 529: 29-42, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30660046

RESUMO

We developed a computational approach called Domain-architecture Aware Inference of Orthologs (DAIO) for the analysis of protein orthology by combining phylogenetic and protein domain-architecture information. Using DAIO, we performed a systematic study of the proteomes of all human Herpesviridae species to define Strict Ortholog Groups (SOGs). In addition to assessing the taxonomic distribution for each protein based on sequence similarity, we performed a protein domain-architecture analysis for every protein family and computationally inferred gene duplication events. While many herpesvirus proteins have evolved without any detectable gene duplications or domain rearrangements, numerous herpesvirus protein families do exhibit complex evolutionary histories. Some proteins acquired additional domains (e.g., DNA polymerase), whereas others show a combination of domain acquisition and gene duplication (e.g., betaherpesvirus US22 family), with possible functional implications. This novel classification system of SOGs for human Herpesviridae proteins is available through the Virus Pathogen Resource (ViPR, www.viprbrc.org).


Assuntos
Herpesviridae/genética , Herpesviridae/metabolismo , Filogenia , Proteínas Virais/química , Proteínas Virais/genética , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Duplicação Gênica , Regulação Viral da Expressão Gênica , Peptídeo Hidrolases , Domínios Proteicos , Uracila-DNA Glicosidase/química , Uracila-DNA Glicosidase/genética , Uracila-DNA Glicosidase/metabolismo
5.
BMC Evol Biol ; 14: 183, 2014 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-25148856

RESUMO

BACKGROUND: Branched polymers of glucose are universally used for energy storage in cells, taking the form of glycogen in animals, fungi, Bacteria, and Archaea, and of amylopectin in plants. Some enzymes involved in glycogen and amylopectin metabolism are similarly conserved in all forms of life, but some, interestingly, are not. In this paper we focus on the phylogeny of glycogen branching and debranching enzymes, respectively involved in introducing and removing of the α(1-6) bonds in glucose polymers, bonds that provide the unique branching structure to glucose polymers. RESULTS: We performed a large-scale phylogenomic analysis of branching and debranching enzymes in over 400 completely sequenced genomes, including more than 200 from eukaryotes. We show that branching and debranching enzymes can be found in all kingdoms of life, including all major groups of eukaryotes, and thus were likely to have been present in the last universal common ancestor (LUCA) but have been lost in seemingly random fashion in numerous single-celled eukaryotes. We also show how animal branching and debranching enzymes evolved from their LUCA ancestors by acquiring additional domains. Furthermore, we show that enzymes commonly perceived as orthologous, such as human branching enzyme GBE1 and E. coli branching enzyme GlgB, are in fact related by a gene duplication and consequently paralogous. CONCLUSIONS: Despite being usually associated with animal liver glycogen and plant starch, energy storage in the form of branched glucose polymers is clearly an ancient process and has probably been present in the last universal common ancestor of all present life. The evolution of the enzymes enabling this form of energy storage is more complex than previously thought and illustrates the need for explicit phylogenomic analysis in the study of even seemingly "simple" metabolic enzymes. Patterns of conservation in the evolution of the glycogen/starch branching and debranching enzymes hint at some as yet unknown mechanisms, as mutations disrupting these patterns lead to a variety of genetic diseases in humans and other mammals.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Evolução Molecular , Filogenia , Animais , Bactérias/genética , Eucariotos/classificação , Eucariotos/enzimologia , Eucariotos/metabolismo , Glicogênio/metabolismo , Doença de Depósito de Glicogênio/enzimologia , Humanos , Plantas/enzimologia , Plantas/genética , Amido/metabolismo
6.
Nat Struct Mol Biol ; 20(11): 1243-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24077226

RESUMO

Molecular evolution is driven by mutations, which may affect the fitness of an organism and are then subject to natural selection or genetic drift. Analysis of primary protein sequences and tertiary structures has yielded valuable insights into the evolution of protein function, but little is known about the evolution of functional mechanisms, protein dynamics and conformational plasticity essential for activity. We characterized the atomic-level motions across divergent members of the dihydrofolate reductase (DHFR) family. Despite structural similarity, Escherichia coli and human DHFRs use different dynamic mechanisms to perform the same function, and human DHFR cannot complement DHFR-deficient E. coli cells. Identification of the primary-sequence determinants of flexibility in DHFRs from several species allowed us to propose a likely scenario for the evolution of functionally important DHFR dynamics following a pattern of divergent evolution that is tuned by cellular environment.


Assuntos
Evolução Molecular , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética , Sequência de Aminoácidos , Cristalografia por Raios X , Escherichia coli/enzimologia , Teste de Complementação Genética , Deriva Genética , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutação , Conformação Proteica , Seleção Genética , Alinhamento de Sequência
7.
Nucleic Acids Res ; 41(Web Server issue): W22-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23677614

RESUMO

We report a new web server, aLeaves (http://aleaves.cdb.riken.jp/), for homologue collection from diverse animal genomes. In molecular comparative studies involving multiple species, orthology identification is the basis on which most subsequent biological analyses rely. It can be achieved most accurately by explicit phylogenetic inference. More and more species are subjected to large-scale sequencing, but the resultant resources are scattered in independent project-based, and multi-species, but separate, web sites. This complicates data access and is becoming a serious barrier to the comprehensiveness of molecular phylogenetic analysis. aLeaves, launched to overcome this difficulty, collects sequences similar to an input query sequence from various data sources. The collected sequences can be passed on to the MAFFT sequence alignment server (http://mafft.cbrc.jp/alignment/server/), which has been significantly improved in interactivity. This update enables to switch between (i) sequence selection using the Archaeopteryx tree viewer, (ii) multiple sequence alignment and (iii) tree inference. This can be performed as a loop until one reaches a sensible data set, which minimizes redundancy for better visibility and handling in phylogenetic inference while covering relevant taxa. The work flow achieved by the seamless link between aLeaves and MAFFT provides a convenient online platform to address various questions in zoology and evolutionary biology.


Assuntos
Filogenia , Alinhamento de Sequência/métodos , Software , Animais , Fator de Ligação a CCCTC , Genes , Genes Homeobox , Genoma , Humanos , Internet , Proteínas/genética , Proteínas Repressoras/química , Análise de Sequência de Proteína , Vertebrados/genética , Proteínas Wnt/química
8.
BMC Bioinformatics ; 14: 158, 2013 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-23668630

RESUMO

BACKGROUND: Scientists rarely reuse expert knowledge of phylogeny, in spite of years of effort to assemble a great "Tree of Life" (ToL). A notable exception involves the use of Phylomatic, which provides tools to generate custom phylogenies from a large, pre-computed, expert phylogeny of plant taxa. This suggests great potential for a more generalized system that, starting with a query consisting of a list of any known species, would rectify non-standard names, identify expert phylogenies containing the implicated taxa, prune away unneeded parts, and supply branch lengths and annotations, resulting in a custom phylogeny suited to the user's needs. Such a system could become a sustainable community resource if implemented as a distributed system of loosely coupled parts that interact through clearly defined interfaces. RESULTS: With the aim of building such a "phylotastic" system, the NESCent Hackathons, Interoperability, Phylogenies (HIP) working group recruited 2 dozen scientist-programmers to a weeklong programming hackathon in June 2012. During the hackathon (and a three-month follow-up period), 5 teams produced designs, implementations, documentation, presentations, and tests including: (1) a generalized scheme for integrating components; (2) proof-of-concept pruners and controllers; (3) a meta-API for taxonomic name resolution services; (4) a system for storing, finding, and retrieving phylogenies using semantic web technologies for data exchange, storage, and querying; (5) an innovative new service, DateLife.org, which synthesizes pre-computed, time-calibrated phylogenies to assign ages to nodes; and (6) demonstration projects. These outcomes are accessible via a public code repository (GitHub.com), a website (http://www.phylotastic.org), and a server image. CONCLUSIONS: Approximately 9 person-months of effort (centered on a software development hackathon) resulted in the design and implementation of proof-of-concept software for 4 core phylotastic components, 3 controllers, and 3 end-user demonstration tools. While these products have substantial limitations, they suggest considerable potential for a distributed system that makes phylogenetic knowledge readily accessible in computable form. Widespread use of phylotastic systems will create an electronic marketplace for sharing phylogenetic knowledge that will spur innovation in other areas of the ToL enterprise, such as annotation of sources and methods and third-party methods of quality assessment.


Assuntos
Filogenia , Software , Internet
9.
Cold Spring Harb Perspect Biol ; 5(3): a008649, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23457257

RESUMO

The number of available eukaryotic genomes has expanded to the point where we can evaluate the complete evolutionary history of many cellular processes. Such analyses for the apoptosis regulatory networks suggest that this network already existed in the ancestor of the entire animal kingdom (Metazoa) in a form more complex than in some popular animal model organisms. This supports the growing realization that regulatory networks do not necessarily evolve from simple to complex and that the relative simplicity of these networks in nematodes and insects does not represent an ancestral state, but is the result of secondary simplifications. Network evolution is not a process of monotonous increase in complexity, but a dynamic process that includes lineage-specific gene losses and expansions, protein domain reshuffling, and emergence/reemergence of similar protein architectures by parallel evolution. Studying the evolution of such networks is a challenging yet interesting subject for research and investigation, and such studies on the apoptosis networks provide us with interesting hints of how these networks, critical in so many human diseases, have developed.


Assuntos
Apoptose/fisiologia , Evolução Biológica , Imunidade Inata/fisiologia , Filogenia , Estrutura Terciária de Proteína/fisiologia , Animais , Apoptose/genética , Fator Apoptótico 1 Ativador de Proteases/genética , Fator Apoptótico 1 Ativador de Proteases/fisiologia , Caspases/genética , Caspases/fisiologia , Ciclina D1/genética , Ciclina D1/fisiologia , Humanos , Estrutura Terciária de Proteína/genética , Especificidade da Espécie , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/fisiologia
10.
PLoS Comput Biol ; 8(11): e1002701, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166479

RESUMO

Evolutionary innovation in eukaryotes and especially animals is at least partially driven by genome rearrangements and the resulting emergence of proteins with new domain combinations, and thus potentially novel functionality. Given the random nature of such rearrangements, one could expect that proteins with particularly useful multidomain combinations may have been rediscovered multiple times by parallel evolution. However, existing reports suggest a minimal role of this phenomenon in the overall evolution of eukaryotic proteomes. We assembled a collection of 172 complete eukaryotic genomes that is not only the largest, but also the most phylogenetically complete set of genomes analyzed so far. By employing a maximum parsimony approach to compare repertoires of Pfam domains and their combinations, we show that independent evolution of domain combinations is significantly more prevalent than previously thought. Our results indicate that about 25% of all currently observed domain combinations have evolved multiple times. Interestingly, this percentage is even higher for sets of domain combinations in individual species, with, for instance, 70% of the domain combinations found in the human genome having evolved independently at least once in other species. We also show that previous, much lower estimates of this rate are most likely due to the small number and biased phylogenetic distribution of the genomes analyzed. The process of independent emergence of identical domain combination is widespread, not limited to domains with specific functional categories. Besides data from large-scale analyses, we also present individual examples of independent domain combination evolution. The surprisingly large contribution of parallel evolution to the development of the domain combination repertoire in extant genomes has profound consequences for our understanding of the evolution of pathways and cellular processes in eukaryotes and for comparative functional genomics.


Assuntos
Eucariotos/genética , Evolução Molecular , Estrutura Terciária de Proteína/genética , Proteínas/genética , Animais , Genoma , Modelos Biológicos , Filogenia , Proteínas/química
11.
PLoS One ; 6(4): e18497, 2011 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-21541028

RESUMO

Drosophila melanogaster is emerging as a powerful model system for the study of cardiac disease. Establishing peptide and protein maps of the Drosophila heart is central to implementation of protein network studies that will allow us to assess the hallmarks of Drosophila heart pathogenesis and gauge the degree of conservation with human disease mechanisms on a systems level. Using a gel-LC-MS/MS approach, we identified 1228 protein clusters from 145 dissected adult fly hearts. Contractile, cytostructural and mitochondrial proteins were most abundant consistent with electron micrographs of the Drosophila cardiac tube. Functional/Ontological enrichment analysis further showed that proteins involved in glycolysis, Ca(2+)-binding, redox, and G-protein signaling, among other processes, are also over-represented. Comparison with a mouse heart proteome revealed conservation at the level of molecular function, biological processes and cellular components. The subsisting peptidome encompassed 5169 distinct heart-associated peptides, of which 1293 (25%) had not been identified in a recent Drosophila peptide compendium. PeptideClassifier analysis was further used to map peptides to specific gene-models. 1872 peptides provide valuable information about protein isoform groups whereas a further 3112 uniquely identify specific protein isoforms and may be used as a heart-associated peptide resource for quantitative proteomic approaches based on multiple-reaction monitoring. In summary, identification of excitation-contraction protein landmarks, orthologues of proteins associated with cardiovascular defects, and conservation of protein ontologies, provides testimony to the heart-like character of the Drosophila cardiac tube and to the utility of proteomics as a complement to the power of genetics in this growing model of human heart disease.


Assuntos
Envelhecimento/metabolismo , Drosophila melanogaster/metabolismo , Miocárdio/metabolismo , Proteoma/metabolismo , Animais , Proteínas de Drosophila/química , Proteínas de Drosophila/classificação , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/ultraestrutura , Humanos , Espectrometria de Massas , Camundongos , Anotação de Sequência Molecular , Miocárdio/citologia , Miocárdio/ultraestrutura , Peptídeos/metabolismo , Especificidade da Espécie
12.
Genome Biol ; 12(1): R4, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21241503

RESUMO

BACKGROUND: Genome size and complexity, as measured by the number of genes or protein domains, is remarkably similar in most extant eukaryotes and generally exhibits no correlation with their morphological complexity. Underlying trends in the evolution of the functional content and capabilities of different eukaryotic genomes might be hidden by simultaneous gains and losses of genes. RESULTS: We reconstructed the domain repertoires of putative ancestral species at major divergence points, including the last eukaryotic common ancestor (LECA). We show that, surprisingly, during eukaryotic evolution domain losses in general outnumber domain gains. Only at the base of the animal and the vertebrate sub-trees do domain gains outnumber domain losses. The observed gain/loss balance has a distinct functional bias, most strikingly seen during animal evolution, where most of the gains represent domains involved in regulation and most of the losses represent domains with metabolic functions. This trend is so consistent that clustering of genomes according to their functional profiles results in an organization similar to the tree of life. Furthermore, our results indicate that metabolic functions lost during animal evolution are likely being replaced by the metabolic capabilities of symbiotic organisms such as gut microbes. CONCLUSIONS: While protein domain gains and losses are common throughout eukaryote evolution, losses oftentimes outweigh gains and lead to significant differences in functional profiles. Results presented here provide additional arguments for a complex last eukaryotic common ancestor, but also show a general trend of losses in metabolic capabilities and gain in regulatory complexity during the rise of animals.


Assuntos
Eucariotos/genética , Evolução Molecular , Genoma , Estrutura Terciária de Proteína , Eucariotos/classificação , Eucariotos/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Metagenoma , Modelos Genéticos
13.
Nucleic Acids Res ; 39(Database issue): D494-6, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20961957

RESUMO

The Open Protein Structure Annotation Network (TOPSAN) is a web-based collaboration platform for exploring and annotating structures determined by structural genomics efforts. Characterization of those structures presents a challenge since the majority of the proteins themselves have not yet been characterized. Responding to this challenge, the TOPSAN platform facilitates collaborative annotation and investigation via a user-friendly web-based interface pre-populated with automatically generated information. Semantic web technologies expand and enrich TOPSAN's content through links to larger sets of related databases, and thus, enable data integration from disparate sources and data mining via conventional query languages. TOPSAN can be found at http://www.topsan.org.


Assuntos
Bases de Dados de Proteínas , Conformação Proteica , Genômica , Proteínas/química , Proteínas/genética , Interface Usuário-Computador
14.
Nucleic Acids Res ; 39(Database issue): D1095-102, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20864446

RESUMO

GreenPhylDB is a database designed for comparative and functional genomics based on complete genomes. Version 2 now contains sixteen full genomes of members of the plantae kingdom, ranging from algae to angiosperms, automatically clustered into gene families. Gene families are manually annotated and then analyzed phylogenetically in order to elucidate orthologous and paralogous relationships. The database offers various lists of gene families including plant, phylum and species specific gene families. For each gene cluster or gene family, easy access to gene composition, protein domains, publications, external links and orthologous gene predictions is provided. Web interfaces have been further developed to improve the navigation through information related to gene families. New analysis tools are also available, such as a gene family ontology browser that facilitates exploration. GreenPhylDB is a component of the South Green Bioinformatics Platform (http://southgreen.cirad.fr/) and is accessible at http://greenphyl.cirad.fr. It enables comparative genomics in a broad taxonomy context to enhance the understanding of evolutionary processes and thus tends to speed up gene discovery.


Assuntos
Bases de Dados Genéticas , Genoma de Planta , Genes de Plantas , Genômica , Anotação de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas/classificação , Plantas/genética , Software
15.
Dev Comp Immunol ; 35(4): 461-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21110998

RESUMO

Toll/interleukin-1 receptor (TIR) domain-containing proteins play important roles in defense against pathogens in both animals and plants, connecting the immunity signaling pathways via a chain of specific protein-protein interactions. Among them is SARM, the only TIR domain-containing adaptor that can negatively regulate TLR signaling. By extensive phylogenetic analysis, we show here that SARM is closely related to bacterial proteins with TIR domains, suggesting that this family has a different evolutionary history from other animal TIR-containing adaptors, possibly emerging via a lateral gene transfer from bacteria to animals. We also show evidence of several similar, independent transfer events, none of which, however, survived in vertebrates. An evolutionary relationship between the animal SARM adaptor and bacterial proteins with TIR domains illustrates the possible role that bacterial TIR-containing proteins play in regulating eukaryotic immune responses and how this mechanism was possibly adapted by the eukaryotes themselves.


Assuntos
Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/imunologia , Evolução Molecular , Animais , Proteínas do Citoesqueleto/química , Transferência Genética Horizontal , Interações Hospedeiro-Patógeno , Humanos , Metagenômica , Modelos Moleculares , Filogenia , Estrutura Terciária de Proteína , Receptores de Interleucina-1/química , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/imunologia , Transdução de Sinais
16.
Immunogenetics ; 62(5): 263-72, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20195594

RESUMO

In animals, the innate immune system is the first line of defense against invading microorganisms, and the pattern-recognition receptors (PRRs) are the key components of this system, detecting microbial invasion and initiating innate immune defenses. Two families of PRRs, the intracellular NOD-like receptors (NLRs) and the transmembrane Toll-like receptors (TLRs), are of particular interest because of their roles in a number of diseases. Understanding the evolutionary history of these families and their pattern of evolutionary changes may lead to new insights into the functioning of this critical system. We found that the evolution of both NLR and TLR families included massive species-specific expansions and domain shuffling in various lineages, which resulted in the same domain architectures evolving independently within different lineages in a process that fits the definition of parallel evolution. This observation illustrates both the dynamics of the innate immune system and the effects of "combinatorially constrained" evolution, where existence of the limited numbers of functionally relevant domains constrains the choices of domain architectures for new members in the family, resulting in the emergence of independently evolved proteins with identical domain architectures, often mistaken for orthologs.


Assuntos
Evolução Molecular , Receptores de Reconhecimento de Padrão/química , Receptores de Reconhecimento de Padrão/genética , Animais , Humanos , Imunidade Inata , Modelos Moleculares , Filogenia , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Receptores de Reconhecimento de Padrão/imunologia , Receptores Toll-Like/química , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia
17.
BMC Bioinformatics ; 10: 356, 2009 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-19860910

RESUMO

BACKGROUND: Evolutionary trees are central to a wide range of biological studies. In many of these studies, tree nodes and branches need to be associated (or annotated) with various attributes. For example, in studies concerned with organismal relationships, tree nodes are associated with taxonomic names, whereas tree branches have lengths and oftentimes support values. Gene trees used in comparative genomics or phylogenomics are usually annotated with taxonomic information, genome-related data, such as gene names and functional annotations, as well as events such as gene duplications, speciations, or exon shufflings, combined with information related to the evolutionary tree itself. The data standards currently used for evolutionary trees have limited capacities to incorporate such annotations of different data types. RESULTS: We developed a XML language, named phyloXML, for describing evolutionary trees, as well as various associated data items. PhyloXML provides elements for commonly used items, such as branch lengths, support values, taxonomic names, and gene names and identifiers. By using "property" elements, phyloXML can be adapted to novel and unforeseen use cases. We also developed various software tools for reading, writing, conversion, and visualization of phyloXML formatted data. CONCLUSION: PhyloXML is an XML language defined by a complete schema in XSD that allows storing and exchanging the structures of evolutionary trees as well as associated data. More information about phyloXML itself, the XSD schema, as well as tools implementing and supporting phyloXML, is available at http://www.phyloxml.org.


Assuntos
Evolução Biológica , Biologia Computacional/métodos , Genômica/métodos , Filogenia , Software , Bases de Dados Genéticas
18.
Comb Chem High Throughput Screen ; 12(1): 2-23, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19149488

RESUMO

Ion channels are intimately involved in virtually every physiological process of consequence in humans. Their importance is underscored by the identification of numerous "channelopathies", human diseases caused by ion channel mutations. Ion Channels have consequently been viewed as fertile ground for drug discovery and, indeed, they represent one of the largest target classes for current medicines. The future prospects of ion channels as a target class are tied to the functional characterization of the human ion channel set on a genomic scale. The focus of this review is to describe the molecular diversity and conservation of human ion channels. The human genome contains at least 232 genes that encode the pore-forming subunits of plasma membrane ion channels. Comparative genome analysis shows that most human ion channel gene families have their origins in the earliest metazoans but the human genes are largely derived from duplications that took place in the vertebrate lineage. The mouse and human ion channel gene sets are virtually identical, but differ significantly from fish channel sets. Genome comparisons highlight a number of highly conserved channel families that do not yet have specifically defined functional roles in vivo. These channel families are likely to have non-redundant functions in metazoans and represent some of the best new opportunities for channel target prospecting. Furthermore, genome-wide patterns of sequence conservation can now be used to refine strategies for the identification of gene-specific channel probes.


Assuntos
Evolução Biológica , Canais Iônicos/genética , Animais , Evolução Molecular , Genoma Humano , Humanos , Família Multigênica
19.
Genome Biol ; 9(8): R123, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18680598

RESUMO

BACKGROUND: Regulation in protein networks often utilizes specialized domains that 'join' (or 'connect') the network through specific protein-protein interactions. The innate immune system, which provides a first and, in many species, the only line of defense against microbial and viral pathogens, is regulated in this way. Amphioxus (Branchiostoma floridae), whose genome was recently sequenced, occupies a unique position in the evolution of innate immunity, having diverged within the chordate lineage prior to the emergence of the adaptive immune system in vertebrates. RESULTS: The repertoire of several families of innate immunity proteins is expanded in amphioxus compared to both vertebrates and protostome invertebrates. Part of this expansion consists of genes encoding proteins with unusual domain architectures, which often contain both upstream receptor and downstream activator domains, suggesting a potential role for direct connections (shortcuts) that bypass usual signal transduction pathways. CONCLUSION: Domain rearrangements can potentially alter the topology of protein-protein interaction (and regulatory) networks. The extent of such arrangements in the innate immune network of amphioxus suggests that domain shuffling, which is an important mechanism in the evolution of multidomain proteins, has also shaped the development of immune systems.


Assuntos
Cordados não Vertebrados/genética , Receptores de Reconhecimento de Padrão/genética , Animais , Cordados não Vertebrados/imunologia , Evolução Molecular , Expressão Gênica , Imunidade Inata/genética , Dados de Sequência Molecular , Família Multigênica , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/genética , Filogenia , Estrutura Terciária de Proteína , Receptores de Reconhecimento de Padrão/química , Transdução de Sinais
20.
Genome Biol ; 8(10): R226, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17958905

RESUMO

BACKGROUND: Apoptosis, one of the main types of programmed cell death, is regulated and performed by a complex protein network. Studies in model organisms, mostly in the nematode Caenorhabditis elegans, identified a relatively simple apoptotic network consisting of only a few proteins. However, analysis of several recently sequenced invertebrate genomes, ranging from the cnidarian sea anemone Nematostella vectensis, representing one of the morphologically simplest metazoans, to the deuterostomes sea urchin and amphioxus, contradicts the current paradigm of a simple ancestral network that expanded in vertebrates. RESULTS: Here we show that the apoptosome-forming CED-4/Apaf-1 protein, present in single copy in vertebrate, nematode, and insect genomes, had multiple paralogs in the cnidarian-bilaterian ancestor. Different members of this ancestral Apaf-1 family led to the extant proteins in nematodes/insects and in deuterostomes, explaining significant functional differences between proteins that until now were believed to be orthologous. Similarly, the evolution of the Bcl-2 and caspase protein families appears surprisingly complex and apparently included significant gene loss in nematodes and insects and expansions in deuterostomes. CONCLUSION: The emerging picture of the evolution of the apoptosis network is one of a succession of lineage-specific expansions and losses, which combined with the limited number of 'apoptotic' protein families, resulted in apparent similarities between networks in different organisms that mask an underlying complex evolutionary history. Similar results are beginning to surface for other regulatory networks, contradicting the intuitive notion that regulatory networks evolved in a linear way, from simple to complex.


Assuntos
Apoptose/genética , Fator Apoptótico 1 Ativador de Proteases/genética , Evolução Molecular , Redes Reguladoras de Genes/genética , Filogenia , Animais , Teorema de Bayes , Caspases/genética , Biologia Computacional , Especificidade da Espécie , Proteína de Morte Celular Associada a bcl/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA