RESUMO
Consumer spray products (CSPs) are widely used in daily life, yet it is challenging to find products that fully disclose all components posing health risks. Existing studies primarily focus on product components or VOC quantities emitted during use. Therefore, this study aimed to measure the VOC concentrations emitted by CSPs at varying distances. 47 CSPs available in the Korean market were selected, spanning three spray groups: antiseptics/insecticides (11), aromatic deodorants (16), and coating/polishing agents (20). VOC in air samples were collected using Tenax TA tube at a distance of 1 and 3 m from the sprayed CSPs and then analyzed by thermal desorption-gas chromatography-mass spectrometry system. Discrepancies were found between labeled and actual product components. Aromatic deodorants exhibited the highest total VOCs (TVOCs), while antiseptic/insecticide sprays exhibited the lowest. In the antiseptic/insecticide group and coating/polishing agent group, benzene as a propellant had a maximum concentration (30.9 ± 25.6 ppb), and as trigger, its concentration was 33.7 ± 30.7 ppb. Quantitative analysis using advanced analytical instruments only explained 26.1 ± 20.4% of toluene-equivalent TVOCs, suggesting the presence of additional substances. Concentrations varied by distance due to substance volatility and usage. Maintaining a distance of at least 1 m from CSPs is recommended.
RESUMO
Adsorption of per- and poly-fluoroalkyl substances (PFAS) on activated carbon (AC) is considerably hindered by the surface water constituents, degrading the ability of the AC adsorption process to remove PFAS in drinking water treatment. Herein, we developed ionic-liquid-impregnated AC (IL/AC) as an alternative to AC for PFAS sorption and demonstrated its performance with real surface water for the first time. Ionic liquids (ILs) of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (IL(C2)) and 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (IL(C6)) were selected from among 272 different ILs using the conductor-like screening model for realistic solvents (COSMO-RS) simulation. Impregnation of the ILs in AC was verified using various analytical techniques. Although the synthesized IL/ACs were less effective than pristine AC in treating PFAS in deionized water, their performances were less impacted by the surface water constituents, resulting in comparable or sometimes better performances than pristine AC for treating PFAS in surface water. The removal efficiencies of 10 wt% IL(C6)/AC for six PFAS were 1.40-1.96 times higher than those of pristine AC in a surface water sample containing 2.6 mg/L dissolved organic carbon and millimolar-level divalent cation concentration. PFAS partitioning from the surface water to ILs was not hindered by dissolved organic matter and was enhanced by the divalent cations, indicating the advantages of IL/ACs for treating significant amounts of PFAS in water. The synthesized IL/ACs were effective at treating coexisting pharmaceutical and personal-care products in surface water, showcasing their versatility for treating a broad range of water micropollutants.
Assuntos
Água Potável , Fluorocarbonos , Líquidos Iônicos , Carvão Vegetal , Simulação por ComputadorRESUMO
The removal of 53 emerging micropollutants (MPs), including 10 per- and polyfluorinated substances (PFASs), 25 pharmaceuticals and personal care products (PPCPs), 7 pesticides, 5 endocrine disrupters (EDCs), 3 nitrosamines, and 3 taste and odor compounds (T&Os), by chlorination, ozonation, and UV/H2O2 treatment was examined in deionized water and surface waters used as the raw waters in drinking water treatment plants (DWTPs) in South Korea. The UV/H2O2 treatment was effective in the removal of most MPs, whereas chlorination was selectively effective for 19 MPs, including EDCs (>70 %). MPs containing aromatic ring with electron-donating functional group, or primary and secondary amines were effectively removed by chlorination immediately upon reaction initiation. The removal of MPs by ozonation was generally lower than that of the other two processes at a low ozone dose (1 mg L-1), but higher than chlorination at a high ozone dose (3 mg L-1), particularly for 16 MPs, including T&Os. Compared in deionized water, the removals of MPs in the raw water samples were lower in all three processes. The regression models predicting the rate constants (kobs) of 53 MPs showed good agreement between modeled and measured value for UV/H2O2 treatment (R2 = 0.948) and chlorination (R2 = 0.973), despite using only dissolved organic carbon (DOC) and oxidant concentration as variables, whereas the ozonation model showed a variation (R2 = 0.943). Our results can provide the resources for determining which oxidative process is suitable for treating specific MPs present in the raw waters of DWTPs.
Assuntos
Água Potável , Ozônio , Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio , Halogenação , Poluentes Químicos da Água/análise , Purificação da Água/métodosRESUMO
Widespread use of spray-type consumer products can raise significant concerns regarding their effects on indoor air quality and human health. In this study, we conducted non-target screening using gas chromatography-mass spectrometry (GC-MS) to analyze VOCs in 48 different spray-type consumer products. Using this approach, we tentatively identified a total of 254 VOCs from the spray-type products. Notably, more VOCs were detected in propellant-type products which are mostly solvent-based than in trigger-type ones which are mostly water-based. The VOCs identified encompass various chemical classes including alkanes, cycloalkanes, monoterpenoids, carboxylic acid derivatives, and carbonyl compounds, some of which arouse concerns due to their potential health effects. Alkanes and cycloalkanes are frequently detected in propellant-type products, whereas perfumed monoterpenoids are ubiquitous across all product categories. Among the identified VOCs, 12 compounds were classified into high-risk groups according to detection frequency and signal-to-noise (S/N) ratio, and their concentrations were confirmed using reference standards. Among the identified VOCs, D-limonene was the most frequently detected compound (freq. 21/48), with the highest concentration of 1.80 mg/g. The risk assessment was performed to evaluate the potential health risks associated with exposure to these VOCs. The non-carcinogenic and carcinogenic risks associated with the assessed VOC compounds were relatively low. However, it is important not to overlook the risk faced by occupational exposure to these VOCs, and the risk from simultaneous exposure to various VOCs contained in the products. This study serves as a valuable resource for the identification of unknown compounds in the consumer products, facilitating the evaluation of potential health risks to consumers.
Assuntos
Poluentes Atmosféricos , Cicloparafinas , Compostos Orgânicos Voláteis , Humanos , Poluentes Atmosféricos/análise , Compostos Orgânicos Voláteis/toxicidade , Compostos Orgânicos Voláteis/análise , Cicloparafinas/análise , Alcanos/análise , Monoterpenos/análise , Monitoramento Ambiental/métodosRESUMO
Many studies have evaluated the hazardous substances contained in various household chemical products. However, for aerosol spray products there is currently no international standard sampling method for use in a component analysis. The aim of this study was to develop an appropriate sampling method for the analysis of volatile organic compounds (VOCs) in consumer aerosol sprays. Two different sampling methods, spraying (into a vial) and perforating (and transferring the contents into a vial), were used to evaluate the levels of 16 VOC components in eight different aerosol spray products. All eight products contained trace amounts of hazardous VOCs, and a quantitative analysis showed that, for the same product, VOC concentrations were higher when spraying than when perforating. Using the spraying method, average toluene, ethylbenzene, p-xylene, o-xylene, and styrene concentrations were 1.80-, 2.10- 2.25-, 2.03-fold, and 1.28-fold higher, respectively, than when using the perforating method. The spraying method may provide more realistic estimates of the user's exposure to harmful substances and the associated health risks when using spray products. Of the two representative methods widely used to analyze harmful substances in consumer aerosol sprays, the spraying method is recommended over the perforating method for the analysis of VOCs.
RESUMO
An investigation was conducted into the dynamic behavior of two polyaromatic hydrocarbon (PAH) semi-volatile organic compound (SVOC) naphthalene (NAP) and benzo [ghi]perylene (BghiP) in air and on various surfaces including glass, dust, and polyurethane foam (PUF) to understand their interaction with different media. A confocal fluorescence microscope and an infrared microscope were employed to detect and monitor the concentration-, time-, and temperature-dependent changes of the aromatic NAP and BghiP species on the surfaces. Infrared two-dimensional mapping of the vibrational characteristic peaks was used to track the two PAHs on the surfaces. Gas chromatography-mass spectrometry (GC-MS) was employed to measure the gaseous concentrations. The sorption of NAP and BghiP on the surfaces was estimated using Arizona desert sand fine (ISO 12103-1 A2) dust and organic contaminant household (SRM 2585) dust. The surface-to-air partition coefficients of NAP and BghiP were estimated on the different surfaces of glass, dust, and PUF. Molecular dynamic simulations were performed on dust surfaces based on the Hatcher model to understand the behavior of NAP and BghiP on dust surfaces. The Weschler-Nazaroff model was introduced to predictPAH film accumulation on the surfaces, providing a better understanding of PAH interaction with different environmental media. These findings could contribute to developing effective strategies to mitigate the adverse impact of PAHs on the environment and human health.
Assuntos
Poeira , Hidrocarbonetos Policíclicos Aromáticos , Humanos , Poeira/análise , Poliuretanos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Monitoramento AmbientalRESUMO
Sediments are sinks for microplastics (MPs) in freshwater environments. It is, therefore, necessary to investigate the occurrence and fate of accumulated MPs in the sediments, which pose a risk to aquatic organisms. We conducted the first comprehensive investigation of MPs in riverine sediment in South Korea to examine the temporal and spatial distribution of MPs in the sediment at the two main branches and downstream of the Han River. The average abundance of MPs over all sites was 0.494 ± 0.280 particles/g. Spatially, the MP abundance at three sites in the North Han River (0.546 ± 0.217 particles/g) was higher than those in the South Han River (0.383 ± 0.145 particles/g) and downstream of the Han River (0.417 ± 0.114 particles/g). The abundances of MPs before dams at two upstream sites were significantly higher than that at other sites because of the slow river flow velocity attributed to the artificial structure. The abundance of MPs after the mosoon season (October, 0.600 ± 0.357 particles/g) was higher than that before the mosoon season (April, 0.389 ± 0.099 particles/g). The most common polymer types observed were polyethylene (>38%) and polypropylene (>24%). Irrespective of the location and season, greater than 93% of MPs identified were fragments, and the remaining were fibers. The concentrations of TOC, TN, and TP in the sediment were positively correlated with MP abundance. MP abundance was also positively correlated with clay and silt fractions of the sediment; however, it was negatively correlated with sand fraction. This study provides a basis for the management of MP pollution by offering findings related to critical factors influencing MP abundance in sediment.
Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/química , Plásticos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , República da Coreia , Sedimentos Geológicos/químicaRESUMO
Trace amounts of semi-volatile organic compounds (SVOCs) of the two isothiazolinones of 2-methylisothiazol-3(2H)-one (MIT) and 2-octyl-4-isothiazolin-3-one (OIT) were detected both in the air and on glass surfaces. Equilibria of SVOCs between air and glass were examined by solid phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS). Surface to air distribution ratios of Ksa for MIT and OIT were determined to be 5.10 m and 281.74 m, respectively, suggesting more abundant MIT in the gas phase by a factor of â¼55. In addition, a facile method of silver nanocube (AgNC)-assisted surface-enhanced Raman scattering (SERS) has been developed for the rapid and sensitive detection of MIT and OIT on glass surfaces. According to MIT and OIT concentration-correlated SERS intensities of Raman peaks at â¼1585 cm-1 and â¼1125 cm-1, respectively. Their calibration curves have been obtained in the concentration ranges between 10-3 to 10-10 M and 10-3 to 10-11 M with their linearity of 0.9986 and 0.9989 for MIT and OIT, respectively. The limits of detection (LODs) of the two isothiazolinones were estimated at 10-10 M, and 10-11 M for MIT and OIT, respectively. Our results indicate that AgNC-assisted SERS spectra are a rapid and high-ultrasensitive method for the quantification of MIT and OIT in practical applications. The development of analytical methods and determination of the Ksa value obtained in this study can be applied to the prediction of the exposure to MIT and OIT from various chemical products and dynamic behaviors to assess human health risks in indoor environments.
Assuntos
Análise Espectral Raman , Compostos Orgânicos Voláteis , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise , Limite de DetecçãoRESUMO
In this study, semi-volatile organic compounds (SVOCs) in samples of indoor dust and organic thin films obtained from 100 residential houses in South Korea, were examined, based on both target analysis using gas chromatography-mass spectrometry (GC-MS) and non-target analysis by gas chromatography-quadrupole time-of flight mass spectrometry (GC-QTOF-MS) screening. In the targeted approach, phthalates and polycyclic aromatic hydrocarbons (PAHs) were analyzed in dust and organic film samples, to find that both these classes of SVOCs were detected in dust and organic film samples, with the median concentrations of eight phthalates (Σ8 phthalate) and 16 PAHs (Σ16 PAH) being 1015.93 µg/g and 1824.97 ng/g in the dust samples, and 75.79 µg/m2 and 2252.78 ng/m2 in the organic film samples, respectively. Among the phthalates, in all house types. bis(2-ethylhexyl) phthalate (DEHP) was detected at the highest concentration, followed by dibutyl phthalate (DBP) and diisobuthyl phthalate (DiBP), with DEHP levels found to be highest in dwelling houses. DEHP levels were found to be significantly associated with building age and renovation status. Lower levels of DEHP were detected in houses less than 10 years old or that had undergone renovation in the previous 10 years. Among the assessed PAHs, a significant correlation was detected between benzo(a)pyrene in dust and building age (p < 0.05). These findings imply that the inhabitants of older houses are at a greater risk of exposure to SVOCs originating from indoor dust and organic films. Non-target screening of selected dust and organic film samples using GC-QTOF-MS data revealed the presence of numerous SVOC compounds, including triphenylphosphine oxide, (Z)-9-octadecenamide, and cyclosiloxanes, along with certain organophosphate flame retardants including tris(1-chloro-2-propyl) phosphate (TCPP) and tris(1,3-dichloroisopropyl) phosphate (TDCPP), and plasticizers. These compounds identified in the non-target screening are of emerging concern, and their presence in dust and organic films needs to be estimated.
Assuntos
Poluição do Ar em Ambientes Fechados , Dietilexilftalato , Retardadores de Chama , Ácidos Ftálicos , Hidrocarbonetos Policíclicos Aromáticos , Compostos Orgânicos Voláteis , Poluição do Ar em Ambientes Fechados/análise , Dietilexilftalato/análise , Poeira/análise , Retardadores de Chama/análise , Organofosfatos/análise , Ácidos Ftálicos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Compostos Orgânicos Voláteis/análiseRESUMO
Micro(nano)plastic (MNP) pollutants have not only impacted human health directly, but are also associated with numerous chemical contaminants that increase toxicity in the natural environment. Most recent research about increasing plastic pollutants in natural environments have focused on the toxic effects of MNPs in water, the atmosphere, and soil. The methodologies of MNP identification have been extensively developed for actual applications, but they still require further study, including on-site detection. This review article provides a comprehensive update on the facile detection of MNPs by Raman spectroscopy, which aims at early diagnosis of potential risks and human health impacts. In particular, Raman imaging and nanostructure-enhanced Raman scattering have emerged as effective analytical technologies for identifying MNPs in an environment. Here, the authors give an update on the latest advances in plasmonic nanostructured materials-assisted SERS substrates utilized for the detection of MNP particles present in environmental samples. Moreover, this work describes different plasmonic materials-including pure noble metal nanostructured materials and hybrid nanomaterials-that have been used to fabricate and develop SERS platforms to obtain the identifying MNP particles at low concentrations. Plasmonic nanostructure-enhanced materials consisting of pure noble metals and hybrid nanomaterials can significantly enhance the surface-enhanced Raman scattering (SERS) spectra signals of pollutant analytes due to their localized hot spots. This concise topical review also provides updates on recent developments and trends in MNP detection by means of SERS using a variety of unique materials, along with three-dimensional (3D) SERS substrates, nanopipettes, and microfluidic chips. A novel material-assisted spectral Raman technique and its effective application are also introduced for selective monitoring and trace detection of MNPs in indoor and outdoor environments.
RESUMO
Three different UV-LED wavelengths (265, 310, and 365 nm) were used in the UV-LED/chlorine reaction to investigate the degradation mechanism of iopromide (IPM) at different wavelengths, a representative iodinated contrast media compound. The degradation rate (k'IPM) increased from pH 6-8 at 265 nm, but, decreased as the pH increased up to 9 at 310 nm and 365 nm. Radical scavenging experiments showed that reactive chlorine species (RCS) are the dominant radical species at all wavelengths, but a higher contribution of OH⢠was observed at lower pH and longer wavelengths. The contribution of RCS decreased but the contribution of OH⢠increased as the wavelength increased. Among RCS, the largest contribution was found to be ClOâ¢. Total nine transformation products (TPs) were identified by LC-QTOF-MS during the UV-LED/chlorine reaction at 265 nm. Based on the identified TPs and their time profiles, we proposed a degradation pathway of IPM during UV-LED/chlorine reaction. The Microtox test using V. fischeri showed that no significant increase in toxicity was observed at all wavelengths. The synergistic effect of UV-LED and chlorine was greater at a higher wavelength by the electrical efficiency per order (EEO) calculation.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloretos , Cloro/química , Iohexol/análogos & derivados , Cinética , Oxirredução , Raios Ultravioleta , Poluentes Químicos da Água/químicaRESUMO
Propiconazole (PRO) is a triazole fungicide that is frequently detected in the water. In this study, we investigated the kinetics and degradation mechanism of PRO during the UV photolysis and UV/H2O2 processes. PRO was removed by the pseudo-first-order kinetics in both processes. The removal of PRO was enhanced by increasing H2O2 concentration in the UV/H2O2 process. The highest removal under neutral conditions, and lower removal of PRO were observed in acidic and alkaline pHs in the UV/H2O2 process. The presence of natural water ingredients such as Cl-, NO3-, humic acid acted as radical scavengers, but HCO3- ion acted as both radical promoter and scavenger in the UV/H2O2 process. The transformation products (TPs) of PRO during both processes were identified using LC-QTOF/MS. Four TPs ([M+H]+ = 238, 256, 306, and 324) were identified during UV photolysis, and six TPs ([M+H]+ = 238, 256, 306, 324, 356, and 358) were identified in the UV/H2O2 process. Among the identified TPs, TP with [M+H]+ values of 356 and 358 were newly identified in the UV/H2O2 process. In addition, ionic byproducts, such as Cl-, NO3-, formate (HCOO-), and acetate (CH3COO-), were newly identified, indicating that significant mineralization was achieved in the UV/H2O2 process. Based on the identified TPs and ionic byproducts, the degradation mechanisms of PRO during two processes were proposed. The major reactions in both processes were ring cleavage and cyclization, and hydroxylation by OH radicals. The Microtox test with Vibrio fischeri showed that, while the toxicity of the reaction solution increased first, then gradually decreased during UV photolysis, the UV/H2O2 process initially increased toxicity at 10 min due to the production of TPs, but toxicity was completely removed as the reaction progressed. The results obtained in this study imply that the UV/H2O2 process is an effective treatment for eliminating PRO, its TPs, and the resulting toxicity in water.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Peróxido de Hidrogênio , Cinética , Oxirredução , Fotólise , Triazóis/toxicidade , Raios Ultravioleta , Água , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Purificação da Água/métodosRESUMO
This study examined the abundance of microplastics (MPs) in 106 fish from 22 species inhabiting three sites of the Han River, South Korea. In total, 1753 MPs from 106 fish samples were identified with an average abundance of 15.60 ± 13.45 MPs per individual fish (MPs indiv-1) in the North Han River, 16.35 ± 12.32 MPs indiv-1 in the South Han River, and 20.14 ± 10.01 MPs indiv-1 in downstream of the Han River, indicating that the fish in the downstream of the Han River was the most contaminated by MPs. The dominant size of MPs detected in fish ranged between 0.1 and 0.2 mm, and the most common polymer types found in fish were polypropylene (PP) (≥40%) and polyethylene (PE) (≥23%), followed by polytetrafluoroethylene (PTFE) (≥16%) at all sampling locations. A significant correlation was observed between the log-transformed number of MPs with log-transformed fish length (p < 0.01) and with log-transformed fish weight (p < 0.01). The Kruskal-Wallis test disclosed a significant difference in the number of MPs among the feeding habits (p < 0.01), indicating that omnivorous and insectivorous fish contained more MPs than carnivorous and herbivorous fish. In addition, fish habitat result showed that pelagic fish contained a higher level of MPs than demersal fish, but no significant differences in the number of MPs among fish habitats were observed (p > 0.05).
Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Plásticos , República da Coreia , Poluentes Químicos da Água/análiseRESUMO
The surface-dependent evaporation behavior of phthalates as semi-volatile organic compounds (SVOCs) on glass, wood, and polyurethane foam (PUF) was investigated. Three phthalates of di-2-ethylhexyl phthalate (DEHP), butyl benzyl phthalate (BBP), and dibutyl phthalate (DBP) were studied to compare the amount of gases vaporized from their surfaces. A 10 mL silicate glass vial was used to compare the gas equilibrium of the phthalates after 2 h. The gases accumulated in the air were transferred to a solid-phase microextraction (SPME) column and analyzed by gas chromatography-mass spectrometry (GC-MS). As correlated with the physicochemical properties of the phthalates, including molecular weights and vapor pressure, the surface-air partition coefficients (Ksa) were found to be in the range of 101-105 m, 106-107 m, and 107-109 m on glass, wood, and PUF, respectively, implying that a significant amount of phthalates are retained on wood and PUF surfaces as compared to glass, and only a trace amount of phthalates can be volatilized into the air, especially the less volatile DEHP. The three-dimensional (3D) morphologies of glass and wood were also examined using a white-light interferometric surface profile microscope and an atomic force microscope (AFM). In contrast to smooth glass surfaces within the sub-micrometer vertical range, the wood surfaces exhibited uneven irregular structures at a height of 5-30 µm. The rough wood surfaces were found to adsorb substantial amounts of gases to prevent the effective volatilization of phthalates into the air, especially the low molecular DBP. Our results imply that wood and PUF surfaces may be superior to glass surfaces in storage and reduction of phthalates in the air, especially DBP.
Assuntos
Ácidos Ftálicos , Compostos Orgânicos Voláteis , Cromatografia Gasosa-Espectrometria de Massas , Gases , Ácidos Ftálicos/análise , Poliuretanos , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/análise , Madeira/químicaRESUMO
In this study, we used a nano-ozone bubble to enhance the efficiency of the ozone/H2O2 process for the degradation of tetramethylammonium hydroxide (TMAH) found in semiconductor wastewater at high levels. The nano-ozone bubble significantly increased ozone mass transfer rate compared to that of the macro-ozone bubble. The half-life of nano-ozone bubbles was 23 times longer than that of the nano-ozone bubbles. Due to the high ozone mass transfer rate and its durability, the nano-ozone bubble increased the TMAH degradation rate compared to that of the macro-ozone. The addition of H2O2 significantly increased the TMAH degradation rate constant by OH production during the nano-ozone bubbles/H2O2 process. The optimum conditions for TMAH removal was 25⯰C and pH 10. Within 90â¯min of the nano-ozone/H2O2 process, TOC removal was 65 % while 80 % of nitrogen was converted into nitrate (NO3-) with 95 % of TMAM removal. Decreases in acute (40-fold) and chronic (2-fold) toxicity were achieved after applying the nano-ozone/H2O2 process to TMAH containing wastewater. However, there was no significant chronic toxicity decrease during the nano-ozone/H2O2 process of TMAH.
RESUMO
Since multilayered MXenes (Ti3C2Tx, a new family of two-dimensional materials) were initially introduced by researchers at Drexel University in 2011, various MXene-based nanocomposites have received increased attention as photocatalysts owing to their exceptional properties (e.g., rich surface chemistry, adjustable bandgap structures, high electrical conductivity, hydrophilicity, thermal stability, and large specific surface area). Therefore, we present a comprehensive review of recent studies on fabrication methods for MXene-based photocatalysts and photocatalytic performance for contaminant degradation, CO2 reduction, H2 evolution, and N2 fixation with various MXene-based nanocomposites. In addition, this review briefly discusses the stability of MXene-based nanophotocatalysts, current limitations, and future research needs, along with the various corresponding challenges, in an effort to reveal the unique properties of MXene-based nanocomposites.
Assuntos
Nanocompostos , Condutividade Elétrica , Humanos , TitânioRESUMO
In this study, a systematic multi-spectroscopic analysis of microplastics (MPs) sampled from a metropolitan area of Seoul was undertaken to elevate understanding of the role of wastewater treatment plants (WWTPs) in eliminating suspended contaminants including MPs before releasing the effluent water into the environment. We analyzed pollutants in influent and effluent samples from a WWTP in Seoul, South Korea. Spectroscopic and microscopic methods were used to analyze MPs. Fourier-transform infrared (FT-IR) spectroscopy in the wavenumber region between 4000 and 715 cm-1 was employed to estimate the abundance of MPs in wastewater. Stereomicroscope images and Nile red staining were used to facilely identify MPs in both influents and effluents to compare the results with those of FT-IR data. Hyperspectral imaging could identify MPs in the influent sample with the reflection method at 400-900 nm. Our preliminary results indicate that the most observed MPs after the wastewater were filtered by a 45 µm stainless steel mesh filter were polyethylene (PE) and polypropylene (PP). The total number of the prevalent MPs in influent samples decreased significantly. Nanostructure particles could be found by field-emission scanning electron microscopy (FE-SEM). Our combined multi-spectroscopic study should be helpful to provide a guideline for the rapid spectroscopic analysis of freshwater in the Han River, Seoul, South Korea.
Assuntos
Poluentes Químicos da Água , Purificação da Água , Monitoramento Ambiental , Microplásticos , Plásticos , República da Coreia , Seul , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias , Poluentes Químicos da Água/análiseRESUMO
We prepared novel Raman substrates for the sensitive detection of submicron-sized plastic spheres in water. Anisotropic nanostar dimer-embedded nanopore substrates were prepared for the efficient identification of submicron-sized plastic spheres by providing internal hot spots of electromagnetic field enhancements at the tips of nanoparticles. Silver-coated gold nanostars (AuNSs@Ag) were inserted into anodized aluminum oxide (AAO) nanopores for enhanced microplastic (MP) detection. We found that surface-enhanced Raman scattering (SERS) substrates of AuNSs@Ag@AAO yielded stronger signals at the same weight percentages for polystyrene MP particles with diameters as small as 0.4 µm, whereas such behaviors could not be observed for larger MPs (diameters of 0.8 µm, 2.3 µm, and 4.8 µm). The detection limit of the submicrometer-sized 0.4 µm in our Raman measurements were estimated to be 0.005% (â¼0.05 mg/g =50 ppm) along with a fast detection time of only a few min without any sample pretreatments. Our nano-sized dimensional matching substrates may provide a useful tool for the application of SERS substrates for submicrometer MP pollutants in water.