Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Transl Anim Sci ; 4(1): 1-9, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32704961

RESUMO

Stock-type mares (498 ± 9 kg BW; 12 ± 7 yr) were used in a completely randomized design for 56 d to test the hypothesis that concentrate fortification improves apparent digestion and enhances lean mass over the topline. Horses were stratified by age, BW, and BCS and randomly assigned to either a custom pelleted concentrate (CON; n = 13), or an iso-caloric, iso-nitrogenous pellet that included amino acid fortification, complexed trace minerals, and fermentation metabolites (FORT; n = 10). Concentrate was offered at a total 0.75% BW/d (as-fed) twice daily, and diets were designed to meet or exceed maintenance requirements for mature horses. Horses had ad libitum access to Coastal bermudagrass hay (7.4% CP, 67% NDF, and 40% ADF). Every 14 d BW and BCS were recorded, and ultrasound images were captured every 28 d. longissimus dorsi area (LDA) and subcutaneous fat thickness (FT) were measured between the 12th and 13th ribs (12th/13th) and 17th and 18th ribs (17th/18th). Intramuscular fat at the 17th/18th ribs and rump fat-thickness were also obtained. Horses were dosed with 10 g/d of titanium dioxide (TiO2) for 14 d to estimate forage dry matter intake (DMI). To account for diurnal variation, fecal samples were collected twice daily at 12-h intervals during the last 4 days, advancing by 3 h each day to represent a 24-h period. Fecal samples were composited by horse and analyzed for TiO2 to estimate fecal output and acid detergent insoluble ash was used to calculate forage DMI. To evaluate body composition, horses were infused with a 0.12 g/kg BW deuterium oxide (D2O) on d 0 and 56. Body fat percentage (BF) was determined by quantifying D2O in plasma samples collected at pre- and 4-h postinfusion via mass spectrometry. All data were analyzed using PROC MIXED (SAS v9.4). The model contained a fixed effect of diet; horse (diet) was a random effect. Horses receiving FORT gained 17th/18th FT (P < 0.01) and increased 17th/18th LDA from d 0 to 56 (P < 0.01) while 17th/18th FT and LDA were unchanged in CON. Regardless of diet, BF estimated by D2O infusion increased in all horses from d 0 to 56 (P < 0.01). Average hay DMI was 2.1% BW, but did not differ between diets. In this study, concentrate fortification did not significantly (P ≥ 0.27) affect apparent digestion. In conclusion, concentrate fortification may promote greater muscle development along the posterior topline.

2.
J Anim Sci ; 97(5): 1945-1955, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-30715345

RESUMO

Maintaining optimal body condition is an important concern for horse owners and managers as it can affect reproductive efficiency, athletic ability, and overall health of the horse; however, information regarding dietary requirements to maintain or alter BCS in the horse is limited. A recently developed model had high accuracy in predicting the energy required to alter BCS in the horse. However, the model was restricted to sedentary mares, while many horses are subject to physical work. The objective of this study was to expand the scope of that model to include exercising horses by incorporating previously published estimates of exercise energy expenditure and then testing the expanded model. Stock type horses (n = 24) were grouped by initial BCS (3.0 to 6.5) and assigned to treatments of light (L), heavy (H), or no-exercise control (C). Horses were fed according to the model recommendations to increase (I) or decrease (D) two BCS within 60 d. Thus, six treatments were obtained: HD, HI, LD, LI, CD, CI. Mean DE intake Mcal/d for each group was HD = 19.3 ± 0.90, HI = 29 ± 0.84, LD = 13.2 ± 0.54, LI = 23.1 ± 1.39, CD = 12.1 ± 0.79, and CI = 21.9 ± 0.94. BCSs were evaluated by three independent appraisers, days 0 and 60 values were used to calculate the average BCS change for HD = -0.88 ± 0.24, HI = 1.13 ± 0.24, LD = -1.5 ± 0.29, LI = 0.88 ± 0.38, CD = -1.38 ± 0.13, and CI = 1.35 ± 0.14. Statistical comparison of final observed and model predicted values revealed acceptable precision when predicting BCS and BW respectively in control horses (r2 = 0.91, 0.98) but less precision when predicting body fat (BF) (r2 = 0.51). Model precision for BCS, BW, and BF respectively in lightly (r2 = 0.29, 0.85, 0.57) and heavily (r2 = 0.04, 0.84, 0.13) exercised horses was low. Model accuracy was acceptable across all treatments when predicting BW (Cb = 0.97, 0.96, 0.98). However, accuracy varied when predicting BCS (Cb = 0.82, 0.89, 0.41) and BF (Cb = 0.80, 0.55, 0.87) for the control, light, and heavy exercise groups, respectively. These results indicate that the revised model is acceptable for sedentary horses but the predictability of the model was insensitive to the exercising horse, therefore the exercise energy expenditure formulas incorporated into the model require revision. Packaging this model in a format that facilitates industry application could lead to more efficient feeding practices of sedentary horses, generating health, and economic benefit. Further investigation into energy expenditure of exercising horses could yield a model with broader applications.


Assuntos
Ingestão de Energia , Metabolismo Energético , Cavalos/fisiologia , Modelos Teóricos , Condicionamento Físico Animal , Tecido Adiposo , Animais , Peso Corporal , Dieta/veterinária , Digestão , Feminino , Masculino , Necessidades Nutricionais , Estado Nutricional , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA