Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Adv Mater ; : e2311031, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597244

RESUMO

Fluorescent proteins (FPs) are heralded as a paradigm of sustainable materials for photonics/optoelectronics. However, their stabilization under non-physiological environments and/or harsh operation conditions is the major challenge. Among the FP-stabilization methods, classical sol-gel is the most effective, but less versatile, as most of the proteins/enzymes are easily degraded due to the need of multi-step processes, surfactants, and mixed water/organic solvents in extreme pH. Herein, sol-gel chemistry with archetypal FPs (mGreenLantern; mCherry) is revisited, simplifying the method by one-pot, surfactant-free, and aqueous media (phosphate buffer saline pH = 7.4). The synthesis mechanism involves the direct reaction of the carboxylic groups at the FP surface with the silica precursor, generating a positively charged FP intermediate that acts as a seed for the formation of size-controlled mesoporous FP@SiO2 nanoparticles. Green-/red-emissive (single-FP component) and dual-emissive (multi-FPs component; kinetic studies not required) FP@SiO2 are prepared without affecting the FP photoluminescence and stabilities (>6 months) under dry storage and organic solvent suspensions. Finally, FP@SiO2 color filters are applied to rainbow and white bio-hybrid light-emitting diodes featuring up to 15-fold enhanced stabilities without reducing luminous efficacy compared to references with native FPs. Overall, an easy, versatile, and effective FP-stabilization method is demonstrated in FP@SiO2 toward sustainable protein lighting.

2.
Biodegradation ; 35(2): 209-224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37402058

RESUMO

Biodegradation rates and mechanical properties of poly(3-hydroxybutyrate) (PHB) composites with green algae and cyanobacteria were investigated for the first time. To the authors knowledge, the addition of microbial biomass led to the biggest observed effect on biodegradation so far. The composites with microbial biomass showed an acceleration of the biodegradation rate and a higher cumulative biodegradation within 132 days compared to PHB or the biomass alone. In order to determine the causes for the faster biodegradation, the molecular weight, the crystallinity, the water uptake, the microbial biomass composition and scanning electron microscope images were assessed. The molecular weight of the PHB in the composites was lower than that of pure PHB while the crystallinity and microbial biomass composition were the same for all samples. A direct correlation of water uptake and crystallinity with biodegradation rate could not be observed. While the degradation of molecular weight of PHB during sample preparation contributed to the improvement of biodegradation, the main reason was attributed to biostimulation by the added biomass. The resulting enhancement of the biodegradation rate appears to be unique in the field of polymer biodegradation. The tensile strength was lowered, elongation at break remained constant and Young's modulus was increased compared to pure PHB.


Assuntos
Hidroxibutiratos , Poliésteres , Poli-Hidroxibutiratos , Ácido 3-Hidroxibutírico , Poliésteres/metabolismo , Hidroxibutiratos/metabolismo , Biomassa , Água , Biodegradação Ambiental
3.
Int J Biol Macromol ; 250: 126063, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37524281

RESUMO

Materials derived from renewable resources have great potential to replace fossil-based plastics in biomedical applications. In this study, the synthesis of cellulose-based photoresists by esterification with methacrylic acid anhydride and sorbic acid was investigated. These resists polymerize under UV irradiation in the range of λ = 254 nm to 365 nm, with or, in the case of the sorbic acid derivative, without using an additional photoinitiator. Usability for biomedical applications was demonstrated by investigating the adhesion and viability of a fibrosarcoma cell line (HT-1080). Compared to polystyrene, the material widely used for cell culture dishes, cell adhesion to the biomaterials tested was even stronger, as assessed by a centrifugation assay. Remarkably, chemical surface modifications of cellulose acetate with methacrylate and sorbic acid allow direct attachment of HT-1080 cells without adding protein modifiers or ligands. Furthermore, cells on both biomaterials show similar cell viability, not significantly different from polystyrene, indicating no significant impairment or enhancement, allowing the use of these cellulose derivatives as support structures for scaffolds or as a self-supporting coating for cell culture solely based on renewable resources.

4.
Appl Microbiol Biotechnol ; 107(9): 2947-2967, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36930278

RESUMO

Bacterial cellulose (BC) represents a renewable biomaterial with unique properties promising for biotechnology and biomedicine. Komagataeibacter hansenii ATCC 53,582 is a well-characterized high-yield producer of BC used in the industry. Its genome encodes three distinct cellulose synthases (CS), bcsAB1, bcsAB2, and bcsAB3, which together with genes for accessory proteins are organized in operons of different complexity. The genetic foundation of its high cellulose-producing phenotype was investigated by constructing chromosomal in-frame deletions of the CSs and of two predicted regulatory diguanylate cyclases (DGC), dgcA and dgcB. Proteomic characterization suggested that BcsAB1 was the decisive CS because of its high expression and its exclusive contribution to the formation of microcrystalline cellulose. BcsAB2 showed a lower expression level but contributes significantly to the tensile strength of BC and alters fiber diameter significantly as judged by scanning electron microscopy. Nevertheless, no distinct extracellular polymeric substance (EPS) from this operon was identified after static cultivation. Although transcription of bcsAB3 was observed, expression of the protein was below the detection limit of proteome analysis. Alike BcsAB2, deletion of BcsAB3 resulted in a visible reduction of the cellulose fiber diameter. The high abundance of BcsD and the accessory proteins CmcAx, CcpAx, and BglxA emphasizes their importance for the proper formation of the cellulosic network. Characterization of deletion mutants lacking the DGC genes dgcA and dgcB suggests a new regulatory mechanism of cellulose synthesis and cell motility in K. hansenii ATCC 53,582. Our findings form the basis for rational tailoring of the characteristics of BC. KEY POINTS: • BcsAB1 induces formation of microcrystalline cellulose fibers. • Modifications by BcsAB2 and BcsAB3 alter diameter of cellulose fibers. • Complex regulatory network of DGCs on cellulose pellicle formation and motility.


Assuntos
Ácido Acético , Acetobacteraceae , Ácido Acético/metabolismo , Matriz Extracelular de Substâncias Poliméricas , Proteômica , Acetobacteraceae/genética , Acetobacteraceae/metabolismo , Celulose/metabolismo
5.
Polymers (Basel) ; 15(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36679334

RESUMO

The use of biodegradable materials such as cellulose and polyesters can be extended through the combination, as well as modification, of these biopolymers. By controlling the molecular structure and composition of copolymers of these components, it should also be possible to tailor their material properties. We hereby report on the synthesis and characterization of cellulose-based graft copolymers with a precise molecular composition and copolymer architecture. To prepare such materials, we initially modified cellulose through the regioselective protection of the 6-OH group using trityl chloride. The 6-O protected compound was then alkylated, and deprotection at the 6-OH group provided the desired 2,3-di-O-alkyl cellulose compounds that were used as macroinitiators for ring opening polymerization. Regioselective modification was hereby necessary to obtain compounds with an exact molecular composition. Ring opening polymerization, catalyzed by Sn(Oct)2, at the primary 6-OH group of the cellulose macroinitiator, using L-lactide or ε-caprolactone, resulted in graft copolymers with the desired functionalization pattern. The materials were characterized using Fourier-transform infrared spectroscopy, 1H- and 13C- nuclear magnetic resonance spectroscopy, size exclusion chromatography as well as X-ray diffraction, and differential scanning calorimetry. PCL-based copolymers exhibited distinct melting point as well as a crystalline phase of up to 47%, while copolymers with PLA segments were highly amorphous, showing a broad amorphous reflex in the XRD spectra, and no melting or crystallization points were discernible using differential scanning calorimetry.

6.
Biomimetics (Basel) ; 8(1)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36648823

RESUMO

The fabrication of green optical waveguides based on cellulose and spider silk might allow the processing of novel biocompatible materials. Regenerated cellulose fibers are used as the core and recombinantly produced spider silk proteins eADF4(C16) as the cladding material. A detected delamination between core and cladding could be circumvented by using a modified spider silk protein with a cellulose-binding domain-enduring permanent adhesion between the cellulose core and the spider silk cladding. The applied spider silk materials were characterized optically, and the theoretical maximum data rate was determined. The results show optical waveguide structures promising for medical applications, for example, in the future.

7.
Polymers (Basel) ; 16(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38201673

RESUMO

Replacing petroleum-based polymers with biopolymers such as polysaccharides is essential for protecting our environment by saving fossil resources. A research field that can benefit from the application of more sustainable and renewable materials is photochemistry. Therefore, cellulose-based photoresists that could be photocrosslinked via UV irradiation (λ = 254 nm and λ = 365 nm) were developed. These biogenic polymers enable the manufacturing of sustainable coatings, even with imprinted microstructures, and cellulose-based bulk materials. Thus, herein, cellulose was functionalized with organic compounds containing carbon double bonds to introduce photocrosslinkable side groups directly onto the cellulose backbone. Therefore, unsaturated anhydrides such as methacrylic acid anhydride and unsaturated and polyunsaturated carboxylic acids such as linoleic acid were utilized. Additionally, these cellulose derivatives were modified with acetate or tosylate groups to generate cellulose-based polymers, which are soluble in organic solvents, making them suitable for multiple processing methods, such as casting, printing and coating. The photocurable resist was basically composed of the UV-crosslinkable biopolymer, an appropriate solvent and, if necessary, a photoinitiator. Moreover, these bio-based photoresists were UV-crosslinkable in the liquid and solid states after the removal of the solvent. Further, the manufactured cellulose-based architectures, even the bulk structures, could be entirely regenerated into pure cellulose devices via a sodium methoxide treatment.

8.
ACS Omega ; 7(36): 32599-32603, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36120026

RESUMO

Cotton-based raw paper, made of 100% cellulose, is used to make humidity-sensing, cottonid for bio-architecture applications. Despite its renewability and excellent mechanical properties, it is inherently flammable. In an effort to reduce its flammability, thin films of fully renewable and environmentally benign polyelectrolytes, chitosan (CH) and phytic acid (PA), were deposited on raw paper via layer-by-layer (LbL) assembly. Only four bilayers (BL) of the CH/PA coating are required to achieve self-extinguishing behavior, with a 69% reduction in peak heat release rate measured by microscale combustion calorimetry. These results demonstrate that this renewable intumescent LbL-assembled film provides an effective flame-retardant treatment for these environmentally friendly, climate-adaptive construction materials and could potentially be used to protect many cellulosic materials.

9.
Biomacromolecules ; 23(6): 2280-2289, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35656823

RESUMO

All-glucose block copolysaccharides with alternated α- and ß-configured blocks do not exist in nature. Such polysaccharides, and materials made thereof, might exhibit very interesting properties due to the different supramolecular structures of the two α- and ß-configured blocks. This would be helical for starch and linear for cellulose in the case of a non-derivatized all-glucose polysaccharide. We propose a synthetic pathway for the preparation of methylated and acetylated building blocks of cellulose and amylose for the regioselective modification at the non-reducing and reducing end to act as glycosyl acceptors and donors, respectively. The glycosyl acceptors with the opposite α- or ß-configured blocks were prepared by acid-catalyzed methanolysis of permethylated amylose as well as cellulose. The regioselectively modified glycosyl donors and acceptors were successfully used in the preparation of block copolysaccharides with an α(1 → 4)-configured and a ß(1 → 4)-configured oligo- or polysaccharide block, respectively.


Assuntos
Amilose , Amido , Celulose , Glucose , Polissacarídeos
10.
Biomacromolecules ; 22(8): 3297-3312, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34270888

RESUMO

Currently, almost all polymer optical materials are derived from fossil resources with known consequences for the environment. In this work, a processing route to obtain cellulose-based biopolymer optical fibers is presented. For this purpose, the optical properties such as the transmission and the refractive index dispersion of regenerated cellulose, cellulose diacetate, cellulose acetate propionate, and cellulose acetate butyrate were determined from planar films. Cellulose fibers were produced using a simple wet-spinning setup. They were examined pure and also coated with the cellulose derivatives to obtain core-cladding-structured optical fibers. The cellulose-based optical fibers exhibit minimum attenuations between 56 and 82 dB m-1 at around 860 nm. The ultimate transmission loss limit of the cellulose-based optical fibers was simulated to characterize the attenuation progression. By reducing extrinsic losses, cellulose-based biopolymer optical fibers could attain theoretical attenuation minima of 84.6 × 10-3 dB m-1 (507 nm), 320 × 10-3 dB m-1 (674 nm), and 745.2 × 10-3 dB m-1 (837 nm) and might substitute fossil-based polymer optical fibers in the future.


Assuntos
Celulose , Fibras Ópticas , Biopolímeros , Polímeros
11.
J Appl Crystallogr ; 54(Pt 1): 217-227, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33833649

RESUMO

Recently, the authors reported on the development of crystallinity in mixed-tacticity polyhydroxybutyrates. Comparable values reported in the literature vary depending on the manner of determination, the discrepancies being partially attributable to scattering from paracrystalline portions of the material. These portions can be qualified by peak profile fitting or quantified by allocation of scattered X-ray intensities. However, the latter requires a good quality of the former, which in turn must additionally account for peak broadening inherent in the measurement setup, and due to limited crystallite sizes and the possible presence of microstrain. Since broadening due to microstrain and paracrystalline order both scale with scattering vector, they are easily confounded. In this work, a method to directionally discern these two influences on the peak shape in a Rietveld refinement is presented. Allocating intensities to amorphous, bulk and paracrystalline portions with changing tactic disturbance provided internal validations of the obtained directional numbers. In addition, the correlation between obtained thermal factors and Young's moduli, determined in earlier work, is discussed.

12.
FEBS Open Bio ; 10(11): 2250-2267, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32860736

RESUMO

Biomimetics is a known innovation paradigm of the twenty-first century with significant impact on science, society, economy, and challenges of sustainability. As such, it can be understood as a mindset for creative thinking and as a methodology or technique for effective knowledge transfer between disciplines, mainly biology and technology. As biomimetics is relevant to practitioners in various fields of application, understanding the teaching and training of biomimetics for different audiences is important. With this article, we aim to give a holistic view of teaching and training practices and opportunities. First, we offer a set of learning objectives based on an analysis of various courses worldwide and we give recommendations for the design of future curricula. Second, based on an audience analysis and interviews, we developed a set of personas of the users of biomimetics, and as such, we offer a deeper understanding of their needs for the design of the process, including tools and methods.


Assuntos
Biomimética/educação , Aprendizagem , Pesquisa Qualitativa
13.
Photochem Photobiol Sci ; 19(4): 515-523, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32239034

RESUMO

Light guidance is a convenient and versatile way to control the positions of phototactic microorganisms. However, the illumination strategies require adaption to the respective organism. We report on the generation of structures composed of the gliding and exopolysaccharide-secreting algae Porphyridium purpureum via their photomovement. Light patterns from a two-dimensional computer-generated hologram were projected onto inoculated agar plates. The obtained pixelated algae patterns were evaluated with regard to the illuminated intensity, contrast and pixel size. Upper and lower thresholds for algae accumulation were determined, allowing to enhance future manipulation of phototactic microorganisms.


Assuntos
Luz , Porphyridium/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Porphyridium/química
14.
Nat Commun ; 11(1): 509, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31980642

RESUMO

The use of renewable feedstock is one of the twelve key principles of sustainable chemistry. Unfortunately, bio-based compounds often suffer from high production cost and low performance. To fully tap the potential of natural compounds it is important to utilize their functionalities that could make them superior compared to fossil-based resources. Here we show the conversion of (+)-3-carene, a by-product of the cellulose industry into ε-lactams from which polyamides. The lactams are selectively prepared in two diastereomeric configurations, leading to semi-crystalline or amorphous, transparent polymers that can compete with the thermal properties of commercial high-performance polyamides. Copolyamides with caprolactam and laurolactam exhibit an increased glass transition and amorphicity compared to the homopolyamides, potentially broadening the scope of standard polyamides. A four-step one-vessel monomer synthesis, applying chemo-enzymatic catalysis for the initial oxidation step, is established. The great potential of the polyamides is outlined.


Assuntos
Nylons/química , Cromatografia em Gel , Cristalização , Cristalografia por Raios X , Lactamas/química , Espectroscopia de Ressonância Magnética , Conformação Molecular , Nylons/síntese química , Polimerização , Estereoisomerismo , Temperatura
15.
Nanomaterials (Basel) ; 8(12)2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30558292

RESUMO

Carbon particles were produced from kraft lignin through carbonization of perfectly spherical, sub-micron beads obtained by aerosol flow. The structure of the resulting carbon particles was elucidated and compared to that derived from commercially available technical lignin powder, which is undefined in geometry. In addition to the smaller diameters of the lignin beads (<1 µm) compared to those of the lignin powder (100 µm), the former displayed a slightly higher structural order as revealed by X-ray diffraction and Raman spectroscopy. With regard to potential application in composite structures, the sub-micron carbon beads were clearly advantageous as a filler of cellulose nanopapers, which displayed better mechanical performance but with limited electrical conductivity. Compression sensing was achieved for this nanocomposite system.

16.
Bioresour Technol ; 269: 237-245, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30179757

RESUMO

Grass silage as a renewable feedstock for an integrated biorefinery includes nutrients and carbon sources directly available in the press juice (PJ) and in lignocellulosic saccharides from the plant framework. Here, a novel two-stage fed-batch fermentation process for biosynthesis of poly-3-hydroxybutyrate (PHB) by Cupriavidus necator DSM 531 is presented. For bacterial growth, nutrient-rich PJ was employed as a fermentation medium, without any supplements. Saccharides derived from the mechano-enzymatic hydrolysis of the press cake (PC) were subjected to a lactic acid fermentation process, before the fermentation products were fed into the polymer accumulation phase. By combination of pH-stat feeding and cell recycling, the PHB content in 22 g L-1 total-dry cells reached 39% after 32 h of cultivation. Using mimicked hydrolyzate of diluted PJ artificially supplemented with glucose and xylose, the resulting cell dry weight of 21 g L-1 contained 42% PHB.


Assuntos
Fermentação , Hidroxibutiratos/metabolismo , Poaceae , Poliésteres/metabolismo , Reatores Biológicos , Cupriavidus necator , Silagem
17.
Carbohydr Polym ; 192: 159-165, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29691008

RESUMO

We report on a method for the preparation of cellulose/chitin composite materials from the ionic liquid 1-butyl-3-methylimidazolium acetate and γ-valerolactone as a biosourced sustainable co-solvent. Element analysis and attentuated total reflectance Fourier transform infrared spectroscopy show that the average degree of acetylation of chitin in the composite materials was around 82.5%. This indicates that chitin is not deacetylated to chitosan during the dissolution process. The X-ray diffraction results show that the degree of crystallinity of the composite materials increases from amorphous to 59% with increasing chitin concentration accompanied by a developing crystallite size up to 3 nm. Mechanical testing yielded a maximum tensile stress of 4.7 MPa, an elastic modulus of 27.4 MPa and a breaking elongation of 78.7% for the composites with 80 wt% chitin. In addition, water contact angle measurements indicated that the presence of chitin rendered the materials more hydrophobic.

18.
Data Brief ; 17: 647-652, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29552614

RESUMO

This article presents experimental data of organosolv lignin from Poacea grass and structural changes after compounding and injection molding as presented in the research article "Effects of high-lignin-loading on thermal, mechanical, and morphological properties of bioplastic composites" [1]. It supplements the article with morphological (SEM), spectroscopic (31P NMR, FT-IR) and chromatographic (GPC, EA) data of the starting lignin as well as molar mass characteristics (mass average molar mass (Mw) and Polydispersity (D)) of the extracted lignin. Refer to Schwarz et al. [2] for a detailed description of the production of the organosolv residue and for further information on the raw material used for lignin extraction. The dataset is made publicly available and can be useful for extended lignin research and critical analyzes.

19.
Adv Mater ; 30(19): e1703653, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29064124

RESUMO

Motile plant structures (e.g., leaves, petals, cone scales, and capsules) are functionally highly robust and resilient concept generators for the development of biomimetic actuators for architecture. Here, a concise review of the state-of-the-art of plant movement principles and derived biomimetic devices is provided. Achieving complex and higher-dimensional shape changes and passive-hydraulic actuation at a considerable time scale, as well as mechanical robustness of the motile technical structures, is challenging. For example, almost all currently available bioinspired hydraulic actuators show similar limitations due to the poroelastic time scale. Therefore, a major challenge is increasing the system size to the meter range, with actuation times of minutes or below. This means that response speed and flow rate need significant improvement for the systems, and the long-term performance degradation issue of hygroscopic materials needs to be addressed. A theoretical concept for "escaping" the poroelastic regime is proposed, and the possibilities for enhancing the mechanical properties of passive-hydraulic bilayer actuators are discussed. Furthermore, the promising aspects for further studies to implement tropistic movement behavior are presented, i.e., movement that depends on the direction of the triggering stimulus, which can finally lead to "smart building skins" that autonomously and self-sufficiently react to changing environmental stimuli in a direction-dependent manner.

20.
Adv Mater ; 30(19): e1703656, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29178190

RESUMO

Bioinspiration, biomorphy, biomimicry, biomimetics, bionics, and biotemplating are terms used to describe the fabrication of materials or, more generally, systems to solve technological problems by abstracting, emulating, using, or transferring structures from biological paradigms. Herein, a brief overview of how the different terminologies are being typically applied is provided. It is proposed that there is a rich field of research that can be expanded by utilizing various novel approaches for the guidance of living organisms for "bio-mediated" material structuring purposes. As examples of contact-based or contact-free guidance, such as substrate patterning, the application of light, magnetic fields, or chemical gradients, potentially interesting methods of creating hierarchically structured monolithic engineering materials, using live patterned biomass, biofilms, or extracellular substances as scaffolds, are presented. The potential advantages of such materials are discussed, and examples of live self-patterning of materials are given.


Assuntos
Biomimética , Biofilmes , Biônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA