Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Magn Reson ; 354: 107519, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37541024

RESUMO

Microwave (MW) resonators in Electron Paramagnetic Resonance (EPR) spectroscopy concentrate the MW magnetic field (B1) at the sample and separate the MW electric field from the sample. There are numerous experimental methods in EPR spectroscopy which all impose different requirements on MW resonators (e.g. high or low quality factor, MW conversion, and B1-field homogeneity). Although commercial spectrometers offer standardized MW resonators for a broad application range, newly emerging and highly-specialized research fields push these spectrometers to or beyond their sensitivity limits. Optimizing the MW resonator offers one direct approach to improve the sensitivity. Here we present three low-cost optimization approaches for a commercially available X-band (9-10 GHz) MW resonator for three experimental purposes (continuous-wave (CW), transient and pulse EPR). We obtain enhanced MW conversion factors for all three optimized resonators and higher quality factors for two optimized resonators. The latter is important for CW and transient EPR. Furthermore, we fabricated a resonator which features an extended area of homogeneous B1-field and, hence, improved pulse EPR performance. Our results demonstrate that small changes to a commercial MW resonator can enhance its performance in general or for specific applications.

2.
Nat Commun ; 14(1): 2619, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147370

RESUMO

Layered van der Waals (vdW) magnets can maintain a magnetic order even down to the single-layer regime and hold promise for integrated spintronic devices. While the magnetic ground state of vdW magnets was extensively studied, key parameters of spin dynamics, like the Gilbert damping, crucial for designing ultra-fast spintronic devices, remains largely unexplored. Despite recent studies by optical excitation and detection, achieving spin wave control with microwaves is highly desirable, as modern integrated information technologies predominantly are operated with these. The intrinsically small numbers of spins, however, poses a major challenge to this. Here, we present a hybrid approach to detect spin dynamics mediated by photon-magnon coupling between high-Q superconducting resonators and ultra-thin flakes of Cr2Ge2Te6 (CGT) as thin as 11 nm. We test and benchmark our technique with 23 individual CGT flakes and extract an upper limit for the Gilbert damping parameter. These results are crucial in designing on-chip integrated circuits using vdW magnets and offer prospects for probing spin dynamics of monolayer vdW magnets.

3.
Phys Rev Lett ; 130(4): 046703, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36763415

RESUMO

We experimentally and theoretically demonstrate that nonlinear spin-wave interactions suppress the hybrid magnon-photon quasiparticle or "magnon polariton" in microwave spectra of a yttrium iron garnet film detected by an on-chip split-ring resonator. We observe a strong coupling between the Kittel and microwave cavity modes in terms of an avoided crossing as a function of magnetic fields at low microwave input powers, but a complete closing of the gap at high powers. The experimental results are well explained by a theoretical model including the three-magnon decay of the Kittel magnon into spin waves. The gap closure originates from the saturation of the ferromagnetic resonance above the Suhl instability threshold by a coherent backreaction from the spin waves.

4.
Phys Rev Lett ; 129(11): 117701, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36154421

RESUMO

Impurity spins in crystal matrices are promising components in quantum technologies, particularly if they can maintain their spin properties when close to surfaces and material interfaces. Here, we investigate an attractive candidate for microwave-domain applications, the spins of group-VI ^{125}Te^{+} donors implanted into natural Si at depths as shallow as 20 nm. We show that surface band bending can be used to ionize such near-surface Te to spin-active Te^{+} state, and that optical illumination can be used further to control the Te donor charge state. We examine spin activation yield, spin linewidth, and relaxation (T_{1}) and coherence times (T_{2}) and show how a zero-field 3.5 GHz "clock transition" extends spin coherence times to over 1 ms, which is about an order of magnitude longer than other near-surface spin systems.

5.
J Magn Reson ; 322: 106876, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264732

RESUMO

Inspired by the considerable success of cryogenically cooled NMR cryoprobes, we present an upgraded X-band EPR probehead, equipped with a cryogenic low-noise preamplifier. Our setup suppresses source noise, can handle the high microwave powers typical in X-band pulsed EPR, and is compatible with the convenient resonator coupling and sample access found on commercially available spectrometers. Our approach allows standard pulsed and continuous-wave EPR experiments to be performed at X-band frequency with significantly increased sensitivity compared to the unmodified setup. The probehead demonstrates a voltage signal-to-noise ratio (SNR) enhancement by a factor close to 8× at a temperature of 6 K, and remains close to 2× at room temperature. By further suppressing room-temperature noise at the expense of reduced microwave power (and thus minimum π-pulse length), the factor of SNR improvement approaches 15 at 6 K, corresponding to an impressive 200-fold reduction in EPR measurement time. We reveal the full potential of this probehead by demonstrating such SNR improvements using a suite of typical hyperfine and dipolar spectroscopy experiments on exemplary samples.

6.
Phys Rev Lett ; 125(13): 137701, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33034465

RESUMO

We report on a novel dynamical phenomenon in electron spin resonance experiments of phosphorus donors. When strongly coupling the paramagnetic ensemble to a superconducting lumped element resonator, the coherent exchange between these two subsystems leads to a train of periodic, self-stimulated echoes after a conventional Hahn echo pulse sequence. The presence of these multiecho signatures is explained using a simple model based on spins rotating on the Bloch sphere, backed up by numerical calculations using the inhomogeneous Tavis-Cummings Hamiltonian.

7.
Phys Rev Lett ; 111(12): 127003, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-24093293

RESUMO

We report the observation of strong coupling between the exchange-coupled spins in a gallium-doped yttrium iron garnet and a superconducting coplanar microwave resonator made from Nb. The measured coupling rate of 450 MHz is proportional to the square root of the number of exchange-coupled spins and well exceeds the loss rate of 50 MHz of the spin system. This demonstrates that exchange-coupled systems are suitable for cavity quantum electrodynamics experiments, while allowing high integration densities due to their spin densities of the order of one Bohr magneton per atom. Our results furthermore show, that experiments with multiple exchange-coupled spin systems interacting via a single resonator are within reach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA