Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Aging Dis ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38916727

RESUMO

Endogenous retroviruses (ERVs), a subset of genomic transposable elements (TEs) in a broader sense, have remained latent within mammalian genomes for tens of millions of years. These genetic elements are typically in a silenced state due to stringent regulatory mechanisms. However, under specific conditions, they can become activated, triggering inflammatory responses through diverse mechanisms. This activation has been shown to play a potential role in various neurological disorders, tumors, and cellular senescence. Consequently, the regulation of ERV expression through various methods holds promise for clinical applications in disease treatment. ERVs also engage in interactions with a variety of exogenous viruses, thereby influencing the outcomes of viral infectious diseases. This article comprehensively reviews the pathogenic cascade of ERVs, encompassing activation, inflammation, associated diseases, senescence, and interplay with viruses. Additionally, it outlines therapeutic strategies targeting ERVs with the aim of offering novel research directions for understanding the relationship between ERVs and diseases, along with corresponding treatment modalities.

2.
Aging Dis ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37815902

RESUMO

Intrinsic biological clocks drive the circadian rhythm, which coordinates the physiological and pathophysiological processes in the body. Recently, a bidirectional relationship between circadian rhythms and several neurological diseases has been reported. Neurological diseases can lead to the disruption of circadian homeostasis, thereby increasing disease severity. Therefore, optimizing the current treatments through circadian-based approaches, including adjusted dosing, changing lifestyle, and targeted interventions, offer a promising opportunity for better clinical outcomes and precision medicine. In this review, we provide detailed implications of the circadian rhythm in neurological diseases through bench-to-bedside approaches. Furthermore, based on the unsatisfactory clinical outcomes, we critically discuss the potential of circadian-based interventions, which may encourage more studies in this discipline, with the hope of improving treatment efficacy in neurological diseases.

3.
Neuroscience ; 528: 64-74, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37516436

RESUMO

The glymphatic system is important for waste removal in the central nervous system. It removes soluble proteins and metabolic waste under the action of aquaporin-4 (AQP4) at the end of astrocytes. The glymphatic system plays a role in numerous neurological diseases; however, the relationship between migraine and the glymphatic system remains unclear. In this study, we explored the relationship between the glymphatic system and migraine using the nitroglycerin migraine model in C57/BL6mice. The glymphatic influx of cerebrospinal fluid tracer was reduced in mice in the migraine model, accompanied by decreased expression and impaired polarization of AQP4, thereby suggesting glymphatic dysfunction in migraine mice model. Then, further suppression of glymphatic function by TGN-020 (an AQP4 blocker) aggravated the migraine pathological changes in mice. The results indicated that glymphatic dysfunction may aggravate migraine pathology. Therefore, our findings revealed the potential role of the glymphatic system in migraine, providing possible targets for migraine prevention and treatment.


Assuntos
Sistema Glinfático , Transtornos de Enxaqueca , Doenças do Sistema Nervoso , Camundongos , Animais , Encéfalo/metabolismo , Sistema Glinfático/metabolismo , Transtornos de Enxaqueca/metabolismo , Doenças do Sistema Nervoso/metabolismo , Astrócitos/metabolismo , Modelos Animais de Doenças , Aquaporina 4/metabolismo
4.
Aging Dis ; 13(5): 1436-1454, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36186129

RESUMO

Ischemic stroke is a detrimental neurological disease characterized by an irreversible infarct core surrounded by an ischemic penumbra, a salvageable region of brain tissue. Unique roles of distinct brain cell subpopulations within the neurovascular unit and peripheral immune cells during ischemic stroke remain elusive due to the heterogeneity of cells in the brain. Single-cell RNA sequencing (scRNA-seq) allows for an unbiased determination of cellular heterogeneity at high-resolution and identification of cell markers, thereby unveiling the principal brain clusters within the cell-type-specific gene expression patterns as well as cell-specific subclusters and their functions in different pathways underlying ischemic stroke. In this review, we have summarized the changes in differentiation trajectories of distinct cell types and highlighted the specific pathways and genes in brain cells that are impacted by stroke. This review is expected to inspire new research and provide directions for investigating the potential pathological mechanisms and novel treatment strategies for ischemic stroke at the level of a single cell.

5.
Mater Today Bio ; 16: 100368, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35937578

RESUMO

Implantation of cardiovascular stents is an important therapeutic method to treat coronary artery diseases. Bare-metal and drug-eluting stents show promising clinical outcomes, however, their permanent presence may create complications. In recent years, numerous preclinical and clinical trials have evaluated the properties of bioresorbable stents, including polymer and magnesium-based stents. Three-dimensional (3D) printed-shape-memory polymeric materials enable the self-deployment of stents and provide a novel approach for individualized treatment. Novel bioresorbable metallic stents such as iron- and zinc-based stents have also been investigated and refined. However, the development of novel bioresorbable stents accompanied by clinical translation remains time-consuming and challenging. This review comprehensively summarizes the development of bioresorbable stents based on their preclinical/clinical trials and highlights translational research as well as novel technologies for stents (e.g., bioresorbable electronic stents integrated with biosensors). These findings are expected to inspire the design of novel stents and optimization approaches to improve the efficacy of treatments for cardiovascular diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA