Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nature ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749479

RESUMO

Immune imprinting is a phenomenon in which prior antigenic experiences influence responses to subsequent infection or vaccination1,2. The effects of immune imprinting on serum antibody responses after boosting with variant-matched SARS-CoV-2 vaccines remain uncertain. Here, we characterized the serum antibody responses after mRNA vaccine boosting of mice and human clinical trial participants. In mice, a single dose of a preclinical version of mRNA-1273 vaccine encoding Wuhan-1 spike minimally imprinted serum responses elicited by Omicron boosters, enabling generation of type-specific antibodies. However, imprinting was observed in mice receiving an Omicron booster after two priming doses of mRNA-1273, an effect that was mitigated by a second booster dose of Omicron vaccine. In both SARS-CoV-2 infected or uninfected humans who received two Omicron-matched boosters after two or more doses of the prototype mRNA-1273 vaccine, spike-binding and neutralizing serum antibodies cross-reacted with Omicron variants as well as more distantly related sarbecoviruses. Because serum neutralizing responses against Omicron strains and other sarbecoviruses were abrogated after pre-clearing with Wuhan-1 spike protein, antibodies induced by XBB.1.5 boosting in humans focus on conserved epitopes targeted by the antecedent mRNA-1273 primary series. Thus, the antibody response to Omicron-based boosters in humans is imprinted by immunizations with historical mRNA-1273 vaccines, but this outcome may be beneficial as it drives expansion of cross-neutralizing antibodies that inhibit infection of emerging SARS-CoV-2 variants and distantly related sarbecoviruses.

2.
Nature ; 629(8013): 878-885, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720086

RESUMO

The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs1-3 and revealed how quickly viral escape can curtail effective options4,5. When the SARS-CoV-2 Omicron variant emerged in 2021, many antibody drug products lost potency, including Evusheld and its constituent, cilgavimab4-6. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination4 and is challenging to replace with existing approaches. Rapidly modifying such high-value antibodies to restore efficacy against emerging variants is a compelling mitigation strategy. We sought to redesign and renew the efficacy of COV2-2130 against Omicron BA.1 and BA.1.1 strains while maintaining efficacy against the dominant Delta variant. Here we show that our computationally redesigned antibody, 2130-1-0114-112, achieves this objective, simultaneously increases neutralization potency against Delta and subsequent variants of concern, and provides protection in vivo against the strains tested: WA1/2020, BA.1.1 and BA.5. Deep mutational scanning of tens of thousands of pseudovirus variants reveals that 2130-1-0114-112 improves broad potency without increasing escape liabilities. Our results suggest that computational approaches can optimize an antibody to target multiple escape variants, while simultaneously enriching potency. Our computational approach does not require experimental iterations or pre-existing binding data, thus enabling rapid response strategies to address escape variants or lessen escape vulnerabilities.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , SARS-CoV-2 , SARS-CoV-2/imunologia , Humanos , COVID-19/imunologia , COVID-19/virologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Anticorpos Antivirais/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Neutralizantes/farmacologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/farmacologia , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/química , Testes de Neutralização , Camundongos , Mutação , Feminino
3.
Cell Rep Med ; 4(11): 101267, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37935199

RESUMO

From the beginning of the COVID-19 pandemic, children have exhibited different susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, reinfection, and disease compared with adults. Motivated by the established significance of SARS-CoV-2-neutralizing antibodies in adults, here we characterize SARS-CoV-2-specific antibody repertoires in a young cohort of individuals aged from 5 months to 18 years old. Our results show that neutralizing antibodies in children possess similar genetic features compared to antibodies identified in adults, with multiple antibodies from children belonging to previously established public antibody clonotypes in adults. Notably, antibodies from children show potent neutralization of circulating SARS-CoV-2 variants that have cumulatively resulted in resistance to virtually all approved monoclonal antibody therapeutics. Our results show that children can rely on similar SARS-CoV-2 antibody neutralization mechanisms compared to adults and are an underutilized source for the discovery of effective antibody therapeutics to counteract the ever-evolving pandemic.


Assuntos
COVID-19 , Pandemias , Humanos , Adulto , Criança , SARS-CoV-2/genética , Anticorpos Antivirais , Anticorpos Neutralizantes/uso terapêutico
4.
Nat Microbiol ; 8(10): 1820-1833, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37749254

RESUMO

The pathogenic and cross-species transmission potential of SARS-CoV-2-related coronaviruses (CoVs) remain poorly characterized. Here we recovered a wild-type pangolin (Pg) CoV GD strain including derivatives encoding reporter genes using reverse genetics. In primary human cells, PgCoV replicated efficiently but with reduced fitness and showed less efficient transmission via airborne route compared with SARS-CoV-2 in hamsters. PgCoV was potently inhibited by US Food and Drug Administration approved drugs, and neutralized by COVID-19 patient sera and SARS-CoV-2 therapeutic antibodies in vitro. A pan-Sarbecovirus antibody and SARS-CoV-2 S2P recombinant protein vaccine protected BALB/c mice from PgCoV infection. In K18-hACE2 mice, PgCoV infection caused severe clinical disease, but mice were protected by a SARS-CoV-2 human antibody. Efficient PgCoV replication in primary human cells and hACE2 mice, coupled with a capacity for airborne spread, highlights an emergence potential. However, low competitive fitness, pre-immune humans and the benefit of COVID-19 countermeasures should impede its ability to spread globally in human populations.


Assuntos
COVID-19 , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Cricetinae , Humanos , Animais , Camundongos , Especificidade de Hospedeiro , Pangolins , SARS-CoV-2/genética , COVID-19/prevenção & controle , Anticorpos Antivirais , Vacinas contra COVID-19 , Camundongos Endogâmicos BALB C
5.
Cell ; 186(11): 2283-2285, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37236153

RESUMO

In vaccinology, both mRNA-based delivery of genes encoding antigens as well as nanoparticle-based vaccines have shown great promise in tackling challenging pathogens. In this issue of Cell, Hoffmann et al. combine these two approaches, harnessing the same cellular pathway hijacked by many viruses to boost immune responses to SARS-CoV-2 vaccination.


Assuntos
Vacinas contra COVID-19 , Nanopartículas , Humanos , Anticorpos Antivirais , Divisão Celular , COVID-19 , SARS-CoV-2
6.
Cell Rep ; 42(4): 112370, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37029928

RESUMO

Understanding the human antibody response to emerging viral pathogens is key to epidemic preparedness. As the size of the B cell response to a pathogenic-virus-protective antigen is poorly defined, we perform deep paired heavy- and light-chain sequencing in Ebola virus glycoprotein (EBOV-GP)-specific memory B cells, allowing analysis of the ebolavirus-specific antibody repertoire both genetically and functionally. This approach facilitates investigation of the molecular and genetic basis for the evolution of cross-reactive antibodies by elucidating germline-encoded properties of antibodies to EBOV and identification of the overlap between antibodies in the memory B cell and serum repertoire. We identify 73 public clonotypes of EBOV, 20% of which encode antibodies with neutralization activity and capacity to protect mice in vivo. This comprehensive analysis of the public and private antibody repertoire provides insight into the molecular basis of the humoral immune response to EBOV GP, which informs the design of vaccines and improved therapeutics.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Humanos , Animais , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , Formação de Anticorpos , Prevalência , Glicoproteínas/genética
7.
bioRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36324800

RESUMO

The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs1-3, but also revealed how quickly viral escape can curtail effective options4,5. With the emergence of the SARS-CoV-2 Omicron variant in late 2021, many clinically used antibody drug products lost potency, including Evusheld™ and its constituent, cilgavimab4,6. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination4 and is challenging to replace with existing approaches. Rapidly modifying such high-value antibodies with a known clinical profile to restore efficacy against emerging variants is a compelling mitigation strategy. We sought to redesign COV2-2130 to rescue in vivo efficacy against Omicron BA.1 and BA.1.1 strains while maintaining efficacy against the contemporaneously dominant Delta variant. Here we show that our computationally redesigned antibody, 2130-1-0114-112, achieves this objective, simultaneously increases neutralization potency against Delta and many variants of concern that subsequently emerged, and provides protection in vivo against the strains tested, WA1/2020, BA.1.1, and BA.5. Deep mutational scanning of tens of thousands pseudovirus variants reveals 2130-1-0114-112 improves broad potency without incurring additional escape liabilities. Our results suggest that computational approaches can optimize an antibody to target multiple escape variants, while simultaneously enriching potency. Because our approach is computationally driven, not requiring experimental iterations or pre-existing binding data, it could enable rapid response strategies to address escape variants or pre-emptively mitigate escape vulnerabilities.

8.
Cell Host Microbe ; 30(9): 1194-1195, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36108609

RESUMO

Utilizing monoclonal antibodies to prevent and treat infectious diseases has been accelerated by the COVID-19 pandemic. In this issue of Cell Host & Microbe, Zheng et al. show how a three-monoclonal-antibody cocktail, that defies conventions of "rational design" for a therapeutic agent, functions cooperatively to disrupt coxsackievirus virions.


Assuntos
COVID-19 , Enterovirus , Anticorpos Monoclonais/uso terapêutico , Humanos , Pandemias , Vírion
9.
STAR Protoc ; 3(2): 101387, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35578733

RESUMO

Real-time cell analysis (RTCA) enables high-throughput, quantitative kinetic measurements of cytopathic effect (CPE) in virus-infected cells. Here, we detail a RTCA approach for assessing antibody neutralization. We describe how to evaluate the neutralizing potency of monoclonal antibodies (mAbs) and identify viral escape mutants to antibody neutralization for severe respiratory syndrome coronavirus 2 (SARS-CoV-2). For complete details on the use and execution of this protocol, please refer to Zost et al. (2020) and Suryadevara et al. (2021).


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais , Anticorpos Antivirais , COVID-19/diagnóstico , Humanos , Glicoproteína da Espícula de Coronavírus
10.
Nat Med ; 28(3): 490-495, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35046573

RESUMO

The emergence of the highly transmissible B.1.1.529 Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is concerning for antibody countermeasure efficacy because of the number of mutations in the spike protein. In this study, we tested a panel of anti-receptor-binding domain monoclonal antibodies (mAbs) corresponding to those in clinical use by Vir Biotechnology (S309, the parent mAb of VIR-7831 (sotrovimab)), AstraZeneca (COV2-2196 and COV2-2130, the parent mAbs of AZD8895 and AZD1061), Regeneron (REGN10933 and REGN10987), Eli Lilly (LY-CoV555 and LY-CoV016) and Celltrion (CT-P59) for their ability to neutralize an infectious B.1.1.529 Omicron isolate. Several mAbs (LY-CoV555, LY-CoV016, REGN10933, REGN10987 and CT-P59) completely lost neutralizing activity against B.1.1.529 virus in both Vero-TMPRSS2 and Vero-hACE2-TMPRSS2 cells, whereas others were reduced (COV2-2196 and COV2-2130 combination, ~12-fold decrease) or minimally affected (S309). Our results suggest that several, but not all, of the antibodies in clinical use might lose efficacy against the B.1.1.529 Omicron variant.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Humanos , Imunoglobulina G , Glicoproteína da Espícula de Coronavírus/genética
11.
iScience ; 25(1): 103602, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34901783

RESUMO

The COVID-19 pandemic revealed an urgent need for rapid profiling of neutralizing antibody responses and development of antibody therapeutics. The current Food and Drug Administration-approved serological tests do not measure antibody-mediated viral neutralization, and there is a need for standardized quantitative neutralization assays. We report a high-throughput two-step profiling approach for identifying neutralizing convalescent plasma. Screening and downselection for serum antibody binding to the receptor-binding domain are followed by quantitative neutralization testing using a chimeric vesicular stomatitis virus expressing spike protein of SARS-CoV-2 in a real-time cell analysis assay. This approach enables a predictive screening process for identifying plasma units that neutralize SARS-CoV-2. To calibrate antibody neutralizing activity in serum from convalescent plasma donors, we introduce a neutralizing antibody standard reagent composed of two human antibodies that neutralize SARS-CoV strains, including SARS-CoV-2 variants of concern. Our results provide a framework for establishing a standardized assessment of antibody-based interventions against COVID-19.

12.
Front Microbiol ; 12: 731008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646251

RESUMO

Advances in experimental capabilities in the glycosciences offer expanding opportunities for discovery in the broad areas of immunology and microbiology. These two disciplines overlap when microbial infection stimulates host immune responses and glycan structures are central in the processes that occur during all such encounters. Microbial glycans mediate host-pathogen interactions by acting as surface receptors or ligands, functioning as virulence factors, impeding host immune responses, or playing other roles in the struggle between host and microbe. In the context of the host, glycosylation drives cell-cell interactions that initiate and regulate the host response and modulates the effects of antibodies and soluble immune mediators. This perspective reports on a workshop organized jointly by the National Institute of Allergy and Infectious Diseases and the National Institute of Dental and Craniofacial Research in May 2020. The conference addressed the use of emerging glycoscience tools and resources to advance investigation of glycans and their roles in microbe-host interactions, immune-mediated diseases, and immune cell recognition and function. Future discoveries in these areas will increase fundamental scientific understanding and have the potential to improve diagnosis and treatment of infections and immune dysregulation.

13.
Cell ; 184(22): 5593-5607.e18, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34715022

RESUMO

Ebolaviruses cause a severe and often fatal illness with the potential for global spread. Monoclonal antibody-based treatments that have become available recently have a narrow therapeutic spectrum and are ineffective against ebolaviruses other than Ebola virus (EBOV), including medically important Bundibugyo (BDBV) and Sudan (SUDV) viruses. Here, we report the development of a therapeutic cocktail comprising two broadly neutralizing human antibodies, rEBOV-515 and rEBOV-442, that recognize non-overlapping sites on the ebolavirus glycoprotein (GP). Antibodies in the cocktail exhibited synergistic neutralizing activity, resisted viral escape, and possessed differing requirements for their Fc-regions for optimal in vivo activities. The cocktail protected non-human primates from ebolavirus disease caused by EBOV, BDBV, or SUDV with high therapeutic effectiveness. High-resolution structures of the cocktail antibodies in complex with GP revealed the molecular determinants for neutralization breadth and potency. This study provides advanced preclinical data to support clinical development of this cocktail for pan-ebolavirus therapy.


Assuntos
Anticorpos Antivirais/imunologia , Ebolavirus/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Linhagem Celular , Microscopia Crioeletrônica , Ebolavirus/ultraestrutura , Epitopos/imunologia , Feminino , Glicoproteínas/química , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/virologia , Humanos , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos BALB C , Modelos Moleculares , Primatas , Receptores Fc/metabolismo , Proteínas Recombinantes/imunologia , Viremia/imunologia
14.
Nat Microbiol ; 6(10): 1233-1244, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34548634

RESUMO

Understanding the molecular basis for immune recognition of SARS-CoV-2 spike glycoprotein antigenic sites will inform the development of improved therapeutics. We determined the structures of two human monoclonal antibodies-AZD8895 and AZD1061-which form the basis of the investigational antibody cocktail AZD7442, in complex with the receptor-binding domain (RBD) of SARS-CoV-2 to define the genetic and structural basis of neutralization. AZD8895 forms an 'aromatic cage' at the heavy/light chain interface using germ line-encoded residues in complementarity-determining regions (CDRs) 2 and 3 of the heavy chain and CDRs 1 and 3 of the light chain. These structural features explain why highly similar antibodies (public clonotypes) have been isolated from multiple individuals. AZD1061 has an unusually long LCDR1; the HCDR3 makes interactions with the opposite face of the RBD from that of AZD8895. Using deep mutational scanning and neutralization escape selection experiments, we comprehensively mapped the crucial binding residues of both antibodies and identified positions of concern with regards to virus escape from antibody-mediated neutralization. Both AZD8895 and AZD1061 have strong neutralizing activity against SARS-CoV-2 and variants of concern with antigenic substitutions in the RBD. We conclude that germ line-encoded antibody features enable recognition of the SARS-CoV-2 spike RBD and demonstrate the utility of the cocktail AZD7442 in neutralizing emerging variant viruses.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/genética , SARS-CoV-2/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/genética , Anticorpos Antivirais/imunologia , Variação Antigênica , Sítios de Ligação , COVID-19/imunologia , COVID-19/virologia , Regiões Determinantes de Complementaridade/química , Regiões Determinantes de Complementaridade/genética , Humanos , Mutação , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia
15.
Cell Rep ; 37(1): 109784, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34592170

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages that are more transmissible and resistant to currently approved antibody therapies poses a considerable challenge to the clinical treatment of coronavirus disease (COVID-19). Therefore, the need for ongoing discovery efforts to identify broadly reactive monoclonal antibodies to SARS-CoV-2 is of utmost importance. Here, we report a panel of SARS-CoV-2 antibodies isolated using the linking B cell receptor to antigen specificity through sequencing (LIBRA-seq) technology from an individual who recovered from COVID-19. Of these antibodies, 54042-4 shows potent neutralization against authentic SARS-CoV-2 viruses, including variants of concern (VOCs). A cryoelectron microscopy (cryo-EM) structure of 54042-4 in complex with the SARS-CoV-2 spike reveals an epitope composed of residues that are highly conserved in currently circulating SARS-CoV-2 lineages. Further, 54042-4 possesses uncommon genetic and structural characteristics that distinguish it from other potently neutralizing SARS-CoV-2 antibodies. Together, these findings provide motivation for the development of 54042-4 as a lead candidate to counteract current and future SARS-CoV-2 VOCs.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , COVID-19/imunologia , SARS-CoV-2/química , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/química , Animais , Anticorpos Antivirais/imunologia , Formação de Anticorpos , COVID-19/genética , COVID-19/virologia , Linhagem Celular , Chlorocebus aethiops , Microscopia Crioeletrônica , Mapeamento de Epitopos/métodos , Epitopos/química , Epitopos/imunologia , Ensaios de Triagem em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores de Antígenos de Linfócitos B/química , Receptores de Antígenos de Linfócitos B/imunologia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Células Vero
16.
Cell Rep ; 36(8): 109604, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34411541

RESUMO

Unrelated individuals can produce genetically similar clones of antibodies, known as public clonotypes, which have been seen in responses to different infectious diseases, as well as healthy individuals. Here we identify 37 public clonotypes in memory B cells from convalescent survivors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or in plasmablasts from an individual after vaccination with mRNA-encoded spike protein. We identify 29 public clonotypes, including clones recognizing the receptor-binding domain (RBD) in the spike protein S1 subunit (including a neutralizing, angiotensin-converting enzyme 2 [ACE2]-blocking clone that protects in vivo) and others recognizing non-RBD epitopes that bind the S2 domain. Germline-revertant forms of some public clonotypes bind efficiently to spike protein, suggesting these common germline-encoded antibodies are preconfigured for avid recognition. Identification of large numbers of public clonotypes provides insight into the molecular basis of efficacy of SARS-CoV-2 vaccines and sheds light on the immune pressures driving the selection of common viral escape mutants.

17.
J Clin Invest ; 131(15)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34156974

RESUMO

Broadly reactive antibodies targeting the influenza A virus hemagglutinin (HA) head domain are thought to be rare and to require extensive somatic mutations or unusual structural features to achieve breadth against divergent HA subtypes. Here we describe common genetic and structural features of protective human antibodies from several individuals recognizing the trimer interface (TI) of the influenza A HA head, a recently identified site of vulnerability. We examined the sequence of TI-reactive antibodies, determined crystal structures for TI antibody-antigen complexes, and analyzed the contact residues of the antibodies on HA to discover common genetic and structural features of TI antibodies. Our data reveal that many TI antibodies are encoded by a light chain variable gene segment incorporating a shared somatic mutation. In addition, these antibodies have a shared acidic residue in the heavy chain despite originating from diverse heavy chain variable gene segments. These studies show that the TI region of influenza A HA is a major antigenic site with conserved structural features that are recognized by a common human B cell public clonotype. The canonical nature of this antibody-antigen interaction suggests that the TI epitope might serve as an important target for structure-based vaccine design.


Assuntos
Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Vírus da Influenza A Subtipo H1N1/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Epitopos/química , Epitopos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia
18.
Nature ; 596(7870): 103-108, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34153975

RESUMO

Rapidly emerging SARS-CoV-2 variants jeopardize antibody-based countermeasures. Although cell culture experiments have demonstrated a loss of potency of several anti-spike neutralizing antibodies against variant strains of SARS-CoV-21-3, the in vivo importance of these results remains uncertain. Here we report the in vitro and in vivo activity of a panel of monoclonal antibodies (mAbs), which correspond to many in advanced clinical development by Vir Biotechnology, AbbVie, AstraZeneca, Regeneron and Lilly, against SARS-CoV-2 variant viruses. Although some individual mAbs showed reduced or abrogated neutralizing activity in cell culture against B.1.351, B.1.1.28, B.1.617.1 and B.1.526 viruses with mutations at residue E484 of the spike protein, low prophylactic doses of mAb combinations protected against infection by many variants in K18-hACE2 transgenic mice, 129S2 immunocompetent mice and hamsters, without the emergence of resistance. Exceptions were LY-CoV555 monotherapy and LY-CoV555 and LY-CoV016 combination therapy, both of which lost all protective activity, and the combination of AbbVie 2B04 and 47D11, which showed a partial loss of activity. When administered after infection, higher doses of several mAb cocktails protected in vivo against viruses with a B.1.351 spike gene. Therefore, many-but not all-of the antibody products with Emergency Use Authorization should retain substantial efficacy against the prevailing variant strains of SARS-CoV-2.


Assuntos
Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/farmacologia , Anticorpos Antivirais/uso terapêutico , COVID-19/virologia , Testes de Neutralização , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/imunologia , COVID-19/genética , COVID-19/imunologia , COVID-19/prevenção & controle , Chlorocebus aethiops , Feminino , Humanos , Masculino , Mesocricetus/imunologia , Mesocricetus/virologia , Camundongos , Camundongos Transgênicos , Profilaxia Pós-Exposição , Profilaxia Pré-Exposição , SARS-CoV-2/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero
19.
bioRxiv ; 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33972937

RESUMO

Unrelated individuals can produce genetically similar clones of antibodies, known as public clonotypes, which have been seen in responses to different infectious diseases as well as healthy individuals. Here we identify 37 public clonotypes in memory B cells from convalescent survivors of SARS-CoV-2 infection or in plasmablasts from an individual after vaccination with mRNA-encoded spike protein. We identified 29 public clonotypes, including clones recognizing the receptor-binding domain (RBD) in the spike protein S1 subunit (including a neutralizing, ACE2-blocking clone that protects in vivo ), and others recognizing non-RBD epitopes that bound the heptad repeat 1 region of the S2 domain. Germline-revertant forms of some public clonotypes bound efficiently to spike protein, suggesting these common germline-encoded antibodies are preconfigured for avid recognition. Identification of large numbers of public clonotypes provides insight into the molecular basis of efficacy of SARS-CoV-2 vaccines and sheds light on the immune pressures driving the selection of common viral escape mutants.

20.
Nat Med ; 27(4): 717-726, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664494

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global COVID-19 pandemic. Rapidly spreading SARS-CoV-2 variants may jeopardize newly introduced antibody and vaccine countermeasures. Here, using monoclonal antibodies (mAbs), animal immune sera, human convalescent sera and human sera from recipients of the BNT162b2 mRNA vaccine, we report the impact on antibody neutralization of a panel of authentic SARS-CoV-2 variants including a B.1.1.7 isolate, chimeric strains with South African or Brazilian spike genes and isogenic recombinant viral variants. Many highly neutralizing mAbs engaging the receptor-binding domain or N-terminal domain and most convalescent sera and mRNA vaccine-induced immune sera showed reduced inhibitory activity against viruses containing an E484K spike mutation. As antibodies binding to spike receptor-binding domain and N-terminal domain demonstrate diminished neutralization potency in vitro against some emerging variants, updated mAb cocktails targeting highly conserved regions, enhancement of mAb potency or adjustments to the spike sequences of vaccines may be needed to prevent loss of protection in vivo.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , SARS-CoV-2/imunologia , Animais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Chlorocebus aethiops , Cricetinae , Humanos , Camundongos , Mutação , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA