Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
World J Psychiatry ; 13(5): 203-214, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37303929

RESUMO

BACKGROUND: Functional near-infrared spectroscopy (fNIRS) is commonly used to study human brain function by measuring the hemodynamic signals originating from cortical activation and provides a new noninvasive detection method for identifying dementia. AIM: To investigate the fNIRS imaging technique and its clinical application in differential diagnosis of subtype dementias including frontotemporal lobe dementia, Lewy body dementia, Parkinson's disease dementia (PDD) and Alzheimer's disease (AD). METHODS: Four patients with different types of dementia were examined with fNIRS during two tasks and a resting state. We adopted the verbal fluency task, working memory task and resting state task. Each patient was compared on the same task. We conducted and analyzed the fNIRS data using a general linear model and Pearson's correlation analysis. RESULTS: Compared with other types of dementias, fNIRS showed the left frontotemporal and prefrontal lobes to be poorly activated during the verbal fluency task in frontotemporal dementia. In Lewy body dementia, severe asymmetry of prefrontal lobes appeared during both verbal fluency and working memory tasks, and the patient had low functional connectivity during a resting state. In PDD, the patient's prefrontal cortex showed lower excitability than the temporal lobe during the verbal fluency task, while the prefrontal cortex showed higher excitability during the working memory task. The patient with AD showed poor prefrontal and temporal activation during the working memory task, and more activation of frontopolar instead of the dorsolateral prefrontal cortex. CONCLUSION: Different hemodynamic characteristics of four types of dementia (as seen by fNIRS imaging) provides evidence that fNIRS can serve as a potential tool for the diagnosis between dementia subtypes.

2.
Neural Regen Res ; 18(4): 708-715, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36204826

RESUMO

Alzheimer's disease is characterized by sustained neuroinflammation leading to memory loss and cognitive decline. The past decade has witnessed tremendous efforts in Alzheimer's disease research; however, no effective treatment is available to prevent disease progression. An increasing body of evidence suggests that neuroinflammation plays an important role in Alzheimer's disease pathogenesis, alongside the classical pathological hallmarks such as misfolded and aggregated proteins (e.g., amyloid-beta and tau). Firstly, this review summarized the clinical and pathological characteristics of Alzheimer's disease. Secondly, we outlined key aspects of glial cell-associated inflammation in Alzheimer's disease pathogenesis and provided the latest evidence on the roles of microglia and astrocytes in Alzheimer's disease pathology. Then, we revealed the double-edged nature of inflammatory cytokines and inflammasomes in Alzheimer's disease. In addition, the potential therapeutic roles of innate immunity and neuroinflammation for Alzheimer's disease were also discussed through these mechanisms. In the final section, the remaining key problems according to the current research status were discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA