Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; : e2409528, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39104292

RESUMO

Cancer treatment is a continuous process, that the current therapy cannot meet the requirement well, including radiotherapy and chemotherapy. Wearable ultrasound device has the potential for continuous sonodynamic therapy due to its portability. However, the miniaturization of ultrasonic probe, system integration of device, and the strategy of continuous treatment are still urgent issues to be addressed. Herein, a portable wearable antitumor system is introduced, which utilizes a custom-developed multiplexed ultrasonic patch array (CWUS Patch) to accurately focus ultrasound on the lesion site and controllably stimulate sonosensitizer to produce a large amount of toxic reactive oxygen species (ROS). The system enables dynamic control of the ultrasound patches and allows real-time adjustments to optimize their performance in various applications, providing greater flexibility and precision in healthcare technology. Furthermore, the excellent penetration property of ultrasound into tumor tissues that induce synchronous apoptosis of tumor cells from the inside out is verified through a mouse model of breast cancer. This fully integrated conformal wearable ultrasound system provides a promising approach to noninvasively, continuously, and efficiently treat deep tumors.

2.
Carbohydr Polym ; 314: 120906, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173043

RESUMO

Bacterial cellulose (BC) has good network structure, biocompatibility, and excellent mechanical properties, and is widely used in the field of biomaterials. The controllable degradation of BC can further broaden its application. Oxidative modification and cellulases may endow BC with degradability, but these methods inevitably lead to the obvious reduction of its initial mechanical properties and uncontrolled degradation. In this paper, the controllable degradation of BC was realized for the first time by using a new controlled release structure that combines the immobilization and release of cellulase. The immobilized enzyme has higher stability and is gradually released in the simulated physiological environment, and its load can control the hydrolysis rate of BC well. Furthermore, the BC-based membrane prepared by this method retains the favorable physicochemical performance of the original BC, including flexibility and great biocompatibility, and holds good application prospects in drug control release or tissue repair.


Assuntos
Celulase , Celulose , Celulose/química , Celulase/química , Enzimas Imobilizadas/química , Materiais Biocompatíveis , Cicatrização
3.
ACS Nano ; 17(7): 6373-6386, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36961738

RESUMO

Magnetic biomaterials are widely used in the field of tissue engineering because of their functions such as drug delivery and targeted therapy. In this study, a magnetically responsive composite microcarrier was prepared through in situ polymerization of dopamine with Fe3O4 (MS) to form a complex. The magnetic composite microcarriers are paramagnetic and have certain magnetic responsiveness, suitable pore size porosity for cell growth, and good blood compatibility and biocompatibility. The bone marrow mesenchyml stem cells (BMSCs) were cultured on magnetic composite microcarriers, and a static magnetic field (SMF) was applied. The results showed that BMSCs adhered to the microcarriers proliferated under the action of horizontal and vertical forces. Magnetic composite microcarriers loaded with BMSCs were implanted into the SD rat model of cartilage defect, and a magnet was added to the operative side. After 12 weeks, cartilage regeneration was observed. The results of gross observation and histological immunostaining 1 month, 2 months, and 3 mounths after operation showed that the magnetic composite microcarriers of loaded cells promoted the early maturation of cartilage and collagen secretion, and the effect of cartilage repair was significantly better than that of the control group. Gait analysis showed that implanting magnetic composite microcarriers loaded with stem cells can reduce postoperative pain and promote limb recovery in SD rats. In conclusion, this study suggests that magnetic composite microcarriers are promising tissue-engineered scaffolds for cartilage regeneration and repair.


Assuntos
Cartilagem Articular , Células-Tronco Mesenquimais , Ratos , Animais , Ratos Sprague-Dawley , Alicerces Teciduais , Engenharia Tecidual/métodos , Proliferação de Células , Fenômenos Magnéticos , Células Cultivadas
4.
Int J Biol Macromol ; 211: 754-766, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35469946

RESUMO

Soybean protein, as a safe and low-cost alternative to animal protein, attracts increasing attention in wound healing. In the present study, beta-conglycinin (7S) and glycinin (11S) with high solubility were obtained through separation of soybean protein. Afterward, 7S or 11S modified bacterial cellulose (BC) composites were produced by self-assembly method. Results confirmed the successful self-assembly of soybean protein isolates on the nanofibers of BC. The surface roughness and hydrophilicity of BC/7S and BC/11S decreased compared with native BC. Soybean protein could be steadily released from BC/7S and BC/11S and BC/11S released more soybean proteins than BC/7S. In vitro, BC/7S and BC/11S supported fibroblasts attachment and promoted fibroblasts proliferation and type I collagen expression. In vivo, BC/7S and BC/11S facilitated wound healing and collagen deposition, enhanced angiogenesis and hair follicle regeneration, as well as reduced scar formation and inflammation in full-thickness skin wounds of rats. Moreover, wounds treated with BC/11S showed a faster wound healing rate and more collagen depositions than those of BC/7S, which may be attributed to the larger considerable amount of soybean protein released by BC/11S. These results indicate that BC/7S and BC/11S are potential candidates for wound dressings.


Assuntos
Globulinas , Proteínas de Soja , Animais , Celulose/farmacologia , Folículo Piloso , Inflamação/tratamento farmacológico , Ratos , Proteínas de Soja/farmacologia , Cicatrização
5.
Bioact Mater ; 17: 471-487, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35415294

RESUMO

Effective strategy of hemostasis and promoting angiogenesis are becoming increasingly urgent in modern medicine due to millions of deaths caused by tissue damage and inflammation. The tissue adhesive has been favored as an optimistic and efficient path to stop bleeding, while, current adhesive presents limitations on wound care or potential degradation safety in clinical practice. Therefore, it is of great clinical significance to construct multifunctional wound adhesive to address the issues. Based on pro-angiogenic property of l-Arginine (L-Arg), in this study, the novel tissue adhesive (G-DLPUs) constructed by L-Arg-based degradable polyurethane (DLPU) and GelMA were prepared for wound care. After systematic characterization, we found that the G-DLPUs were endowed with excellent capability in shape-adaptive adhesion. Moreover, the L-Arg released and the generation of NO during degradation were verified which would enhance wound healing. Following the in vivo biocompatibility was verified, the hemostatic effect of the damaged organ was tested using a rat liver hemorrhage model, from which reveals that the G-DLPUs can reduce liver bleeding by nearly 75% and no obvious inflammatory cells observed around the tissue. Moreover, the wound care effect was confirmed in a mouse full-thickness skin defect model, showing that the hydrogel adhesive significantly improves the thickness of newly formed dermis and enhance vascularization (CD31 staining). In summary, the G-DLPUs are promising candidate to act as multifunctional wound care adhesive for both damaged organ and trauma.

6.
Bioact Mater ; 6(7): 2089-2104, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33511309

RESUMO

Uncontrollable hemorrhage leads to high mortality and thus effective bleeding control becomes increasingly important in the military field and civilian trauma arena. However, current hemostats not only present limitation when treating major bleeding, but also have various side effects. Here we report a self-expanding porous composites (CMCP) based on novel carboxymethyl cellulose (CMC) fibers and acetalized polyvinyl alcohol (PVA) for lethal hemorrhage control. The CMC fibers with uniform fibrous structure, high liquid absorption and procoagulant ability, are evenly interspersed inside the composite matrix. The obtained composites possess unique fiber-porous network, excellent absorption capacity, fast liquid-triggered self-expanding ability and robust fatigue resistance, and their physicochemical performance can be fine-tuned through varying the CMC content. In vitro tests show that the porous composite exhibits strong blood clotting ability, high adhesion to blood cells and protein, and the ability to activate platelet and the coagulation system. In vivo hemostatic evaluation further confirms that the CMCP presents high hemostatic efficacy and multiple hemostatic effects in swine femoral artery major hemorrhage model. Additionally, the CMCP will not fall off from the injury site, and is also easy to surgically remove from the wound cavity after the hemostasis. Importantly, results of CT tomography and 3D reconstruction indicate that CMCP can achieve shape adaptation to the surrounding tissues and the wound cavities with different depths and shapes, to accelerate hemostasis while protecting wound tissue and preventing infection.

7.
Polymers (Basel) ; 11(6)2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212611

RESUMO

In this study, we report the synthesis of a novel bio-based material from polyhydroxyalkanoate (PHA) with good shape-memory effect (SME) and rapid recovery. In this PHA-based polyurethane (PHP), telechelic-hydroxylated polyhydroxyalkanoate (PHA-diols) and polyethylene glycol (PEG) were used as soft segments, providing thermo-responsive domains and water-responsive regions, respectively. Thus, PHP possesses good thermal-responsive SME, such as high shape fixing (>99%) and shape recovery ratio (>90%). Upon immersing in water, the storage modulus of PHP decreased considerably owing to disruption of hydrogen bonds in the PHP matrix. Their water-responsive SME is also suitable for rapid shape recovery (less than 10 s). Furthermore, these outstanding properties can trigger shape-morphing, enabling self-folding and self-expansion of shapes into three-dimensional (3D) scaffolds for potential biomedical applications.

8.
RSC Adv ; 8(45): 25584-25591, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35539818

RESUMO

In this contribution, a series of adamantane (AD)-containing polyurethanes were prepared from 1,3-adamantanediol, 1,4-butanediol and hexamethylene diisocyanate, and the influences of AD on the shape memory behavior of polyurethanes were systematically studied. Due to large steric hindrance, AD was able to disrupt the regular arrangement of polyurethane chains and contributed to forming an amorphous domain. It was found that moderate AD-containing polyurethanes had good mechanical properties and broad glass transition, and shape memory tests confirmed these polyurethanes possessed a shape fixation rate of 98% and shape recovery rate of 91% during a dual-shape memory procedure. Furthermore, they also exhibited a triple-shape memory effect. This work demonstrated a facile and feasible way to prepare polyurethane-based shape memory materials by using adamantane as a functional unit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA