Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Eur J Pharmacol ; 953: 175839, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301318

RESUMO

We previously reported that brain α7 nicotinic acetylcholine receptors inhibited the rat micturition reflex. To elucidate the mechanisms underlying this inhibition, we focused on the relationship between α7 nicotinic acetylcholine receptors and hydrogen sulphide (H2S) because we found that H2S also inhibits the rat micturition reflex in the brain. Therefore, we investigated whether H2S is involved in the inhibition of the micturition reflex induced by the activation of α7 nicotinic acetylcholine receptors in the brain. Cystometry was performed in male Wistar rats under urethane anesthesia (0.8 g/kg, ip) to examine the effects of icv pre-treated GYY4137 (H2S donor, 1 or 3 nmol/rat) or aminooxyacetic acid (AOAA; non-selective H2S synthesis inhibitor, 3 or 10 µg/rat) on PHA568487 (α7 nicotinic acetylcholine receptor agonist, icv)-induced prolongation of intercontraction intervals. PHA568487 administration at a lower dose (0.3 nmol/rat, icv) had no significant effect on intercontraction intervals, while under pre-treatment with GYY4137 (3 nmol/rat icv), PHA568487 (0.3 nmol/rat, icv) significantly prolonged intercontraction intervals. PHA568487 at a higher dose (1 nmol/rat, icv) induced intercontraction interval prolongation, and the PHA568487-induced prolongation was significantly suppressed by AOAA (10 µg/rat, icv). The AOAA-induced suppression of the PHA568487-induced intercontraction interval prolongation was negated by supplementing H2S via GYY4137 at a lower dose (1 nmol/rat, icv) in the brain. GYY4137 or AOAA alone showed no significant effect on intercontraction intervals at each dose used in this study. These findings suggest a possible involvement of brain H2S in inhibiting the rat micturition reflex induced by activation of brain α7 nicotinic acetylcholine receptors.


Assuntos
Sulfeto de Hidrogênio , Receptores Nicotínicos , Ratos , Masculino , Animais , Micção , Receptor Nicotínico de Acetilcolina alfa7 , Sulfeto de Hidrogênio/farmacologia , Ratos Wistar , Encéfalo/metabolismo , Reflexo , Receptores Nicotínicos/metabolismo
2.
Nitric Oxide ; 127: 54-63, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35918055

RESUMO

Cyclophosphamide (CYP), a broad-spectrum anticancer drug, causes serious side effects, such as haemorrhagic cystitis (HC). Hydrogen sulfide (H2S), an endogenous gasotransmitter, has physiological properties, including anti-inflammation, anti-oxidation, and neuromodulation. In this study, we investigated the effects of NaHS (H2S donor) pretreatment on bladder dysfunction in CYP-treated rats. Male Wistar rats were intraperitoneally pretreated with NaHS (3 or 10 µmol/kg) or vehicle once daily for 7 days before cystometry, and CYP (150 mg/kg) or saline was intraperitoneally administered 2 days before cystometry. After cystometry, the bladder tissues were collected for haematoxylin and eosin staining. In some rats, capsaicin (CAP), which can desensitise CAP-sensitive afferent nerves, was subcutaneously injected at 125 mg/kg 4 days before cystometry. CYP reduced intercontraction intervals (ICI) and bladder compliance (Comp) and increased the number of non-voiding contractions (NVCs) compared with the saline-treated control group. NaHS pretreatment dose-dependently improved the CYP-induced these changes. In bladder tissues, CYP increased histological scores of neutrophil infiltration, haemorrhage, and oedema, while NaHS had no effect on these CYP-induced changes. CAP showed a tendency to suppress CYP-induced changes in ICI. NaHS-induced improvement in CYP-induced changes in urodynamic parameters were not detected in CAP-treated rats. These findings suggest that NaHS pretreatment prevented bladder dysfunction in CYP-treated rats by suppressing CAP-sensitive bladder afferent nerves, but not by suppressing bladder inflammation. Therefore, H2S represents a new candidate as a protective drug for bladder dysfunction induced by HC, a side effect of CYP chemotherapy.


Assuntos
Cistite , Sulfeto de Hidrogênio , Animais , Ciclofosfamida/efeitos adversos , Cistite/induzido quimicamente , Cistite/tratamento farmacológico , Cistite/prevenção & controle , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/uso terapêutico , Masculino , Ratos , Ratos Wistar , Bexiga Urinária
3.
Int J Urol ; 29(8): 897-904, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35582850

RESUMO

OBJECTIVES: To investigate the effects of pretreatment with 5-aminolevulinic acid hydrochloride combined with sodium ferrous citrate on bladder dysfunction in cyclophosphamide-induced hemorrhagic cystitis in rats. METHODS: Male Wistar rats (340-460 g) were pretreated with vehicle or with 5-aminolevulinic acid hydrochloride combined with sodium ferrous citrate (100/157 or 300/471 mg/kg/day, po) once daily for 7 days before cystometry. Saline or cyclophosphamide (150 mg/kg, ip) was administered 2 days before cystometry. Cystometry was performed under urethane anesthesia (0.8 g/kg, ip) via a catheter inserted into the bladder. After cystometry, bladder tissues were collected to perform hematoxylin and eosin staining for pathological evaluation (neutrophil infiltration, edema, and bleeding scores), and for enzyme-linked immunosorbent assay and real-time polymerase chain reaction for investigating tissue levels of myeloperoxidase, and mRNA levels of haem oxygenase-1 as a cytoprotective molecule. RESULTS: Compared to controls, cyclophosphamide induced a shorter intercontraction interval, lower bladder compliance, increased number of non-voiding contractions, and increased pathological scores and myeloperoxidase expression in the bladder. Pretreatment with 5-aminolevulinic acid hydrochloride combined with sodium ferrous citrate (300/471 mg/kg/day) significantly improved cyclophosphamide-induced intercontraction interval shortening and increases in number of non-voiding contractions and neutrophil infiltration/bleeding scores and enhanced haem oxygenase-1 expression in the bladder. In addition, cyclophosphamide-induced decreases in bladder compliance and increases in myeloperoxidase were not detected with 5-aminolevulinic acid hydrochloride combined with sodium ferrous citrate pretreatment. CONCLUSIONS: Pretreatment with 5-aminolevulinic acid expects protective effects on bladder dysfunction in cyclophosphamide-induced hemorrhagic cystitis by improving inflammatory changes in bladder tissues perhaps via up-regulation of haem oxygenase-1.


Assuntos
Ácido Aminolevulínico , Cistite , Ácido Aminolevulínico/efeitos adversos , Animais , Ciclofosfamida/efeitos adversos , Cistite/induzido quimicamente , Cistite/prevenção & controle , Masculino , Peroxidase/metabolismo , Peroxidase/farmacologia , Ratos , Ratos Wistar , Bexiga Urinária/patologia
4.
Biochem Biophys Res Commun ; 607: 54-59, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35366544

RESUMO

Corticotropin-releasing factor (CRF), a representative stress-related neuropeptide, in the central nervous system reportedly both facilitates and suppresses the micturition, therefore, roles of central CRF in regulation of the micturition are still controversial. In this study, we investigated (1) effects of intracerebroventricularly (icv)-administered CRF on the micturition, and (2) brain CRF receptor subtypes (CRFR1/CRFR2) and glutamatergic receptors (NMDA/AMPA subtypes) involved in the CRF-induced effects in male Wistar rats under urethane anesthesia. Intercontraction intervals (ICI), and maximal voiding pressure (MVP), were evaluated by continuous cystometry 45 min before CRF administration or intracerebroventricular pretreatment with other drugs as follows and 3 h after CRF administration. Single-voided volume (Vv), post-voiding residual volume (Rv), bladder capacity (BC), and voiding efficiency (VE) were evaluated by single cystometry 60 min before CRF administration and 60-120 min after the administration. Icv-administered CRF reduced ICI, Vv, and BC without changing MVP, Rv, or VE. The CRF-induced ICI reduction was attenuated by icv-pretreated CP154526 (CRFR1 antagonist), MK-801 (NMDA receptor antagonist), and DNQX (AMPA receptor antagonist), but not by K41498 (CRFR2 antagonist). These results indicate that stimulation of brain CRFR1 can be involved in facilitation of the rat micturition via brain NMDA/AMPA receptors.


Assuntos
Receptores de Hormônio Liberador da Corticotropina , Micção , Animais , Encéfalo , Hormônio Liberador da Corticotropina/farmacologia , Masculino , N-Metilaspartato/farmacologia , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato
5.
J Pharmacol Sci ; 148(2): 214-220, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35063136

RESUMO

Pulmonary hypertension (PH) is a severe and progressive disease that causes elevated right ventricular systolic pressure, right ventricular hypertrophy and ultimately right heart failure. However, the underlying pathophysiologic mechanisms are poorly understood. We previously showed that 3,4-l-dihydroxylphenyalanine (DOPA) sensitizes vasomotor response to sympathetic tone via coupling between the adrenergic receptor alpha1 (ADRA1) and a G protein-coupled receptor 143 (GPR143), a DOPA receptor. We investigated whether DOPA similarly enhances ADRA1-mediated contraction in pulmonary arteries isolated from rats, and whether GPR143 is involved in the PH pathogenesis. Pretreating the isolated pulmonary arteries with DOPA 1 µM enhanced vasoconstriction in response to phenylephrine, an ADRA1 agonist, but not to U-46619, a thromboxane A2 agonist or endothelin-1. We generated Gpr143 gene-deficient (Gpr143-/y) rats, and confirmed that DOPA did not augment phenylephrine-induced contractile response in Gpr143-/y rat pulmonary arteries. We utilized a rat model of monocrotaline (MCT)-induced PH. In the MCT model, the right ventricular systolic pressure was attenuated in the Gpr143-/y rats than in WT rats. Phenylephrine-induced cell migration and proliferation were also suppressed in Gpr143-/y pulmonary artery smooth muscle cells than in WT cells. Our result suggests that GPR143 is involved in the PH pathogenesis in the rat models of PH.


Assuntos
Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Monocrotalina/efeitos adversos , Receptores Acoplados a Proteínas G/fisiologia , Receptores de Neurotransmissores/genética , Sístole , Função Ventricular Direita/genética , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Modelos Animais de Doenças , Insuficiência Cardíaca/etiologia , Hipertrofia Ventricular Direita/etiologia , Técnicas In Vitro , Masculino , Artéria Pulmonar/fisiologia , Ratos Sprague-Dawley , Receptores Adrenérgicos alfa 1/fisiologia , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/genética , Disfunção Ventricular Direita/etiologia
6.
Biochem Biophys Res Commun ; 548: 84-90, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33636639

RESUMO

Brain nicotinic acetylcholine receptors (nAChRs) reportedly suppress the micturition, but the mechanisms responsible for this suppression remain unclear. We previously reported that intracerebroventricularly administered (±)-epibatidine (non-selective nAChR agonist) activated the sympatho-adrenomedullary system, which can affect the micturition. Therefore, we investigated (1) whether intracerebroventricularly administered (±)-epibatidine-induced effects on the micturition were dependent on the sympatho-adrenomedullary system, and (2) brain nAChR subtypes involved in the (±)-epibatidine-induced effects in urethane-anesthetized male Wistar rats. Plasma noradrenaline and adrenaline (catecholamines) were measured just before and 5 min after (±)-epibatidine administration. Evaluation of urodynamic parameters, intercontraction intervals (ICI) and maximal voiding pressure (MVP) by cystometry was started 1 h before (±)-epibatidine administration or intracerebroventricular pretreatment with other drugs and continued 1 h after (±)-epibatidine administration. Intracerebroventricularly administered (±)-epibatidine elevated plasma catecholamines and prolonged ICI without affecting MVP, and these changes were suppressed by intracerebroventricularly pretreated mecamylamine (non-selective nAChR antagonist). Acute bilateral adrenalectomy abolished the (±)-epibatidine-induced elevation of plasma catecholamines, but had no effect on the (±)-epibatidine-induced ICI prolongation. The latter was suppressed by intracerebroventricularly pretreated methyllycaconitine (selective α7-nAChR antagonist), SR95531 (GABAA antagonist), and SCH50911 (GABAB antagonist), but not by dihydro-ß-erythroidine (selective α4ß2-nAChR antagonist). Intracerebroventricularly administered PHA568487 (selective α7-nAChR agonist) prolonged ICI without affecting MVP, similar to (±)-epibatidine. These results suggest that stimulation of brain α7-nAChRs suppresses the rat micturition through brain GABAA/GABAB receptors, independently of the sympatho-adrenomedullary outflow modulation.


Assuntos
Encéfalo/metabolismo , Receptores de GABA/metabolismo , Micção , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Medula Suprarrenal/efeitos dos fármacos , Medula Suprarrenal/metabolismo , Adrenalectomia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Epinefrina/sangue , Masculino , Contração Muscular/efeitos dos fármacos , Norepinefrina/sangue , Piridinas/farmacologia , Ratos Wistar , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo
7.
Int J Urol ; 28(4): 459-465, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33403726

RESUMO

OBJECTIVES: To investigate whether a response to hydrogen sulfide donors (GYY4137 and sodium hydrosulfide) and the endogenous hydrogen sulfide system (hydrogen sulfide level and expression of cysteine aminotransferase, cystathionine ß-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase) in the spontaneously hypertensive rat bladder differ with age, we compared the responses of hydrogen sulfide donors to micturition and bladder relaxation, and the endogenous hydrogen sulfide system in the bladder of 18-week versus 12-week-old spontaneously hypertensive rats. METHODS: GYY4137 was intravesically administered and cystometry was performed in anesthetized rats. The responses of sodium hydrosulfide were evaluated in carbachol-mediated precontracted bladder strips. Bladder hydrogen sulfide levels and expression levels of each enzyme were investigated using the methylene blue method and Western blotting, respectively. RESULTS: GYY4137 treatment significantly prolonged intercontraction intervals only in 12-week-old rats. Sodium hydrosulfide-induced bladder relaxation was significantly attenuated in the strips of 18-week-old rats compared with that in 12-week-old rats. In the bladder dome, significant increases in hydrogen sulfide levels and in the expression of cystathionine ß-synthase, 3-mercaptopyruvate sulfurtransferase, and cysteine aminotransferase were observed in 18-week-old rats compared with 12-week-old rats. However, cystathionine γ-lyase bands were not detected in bladder tissues of either group. CONCLUSIONS: Bladder relaxation induced by hydrogen sulfide may be attenuated in spontaneously hypertensive rats in an age-dependent manner.


Assuntos
Sulfeto de Hidrogênio , Animais , Ratos , Ratos Endogâmicos SHR , Bexiga Urinária , Micção
8.
Nitric Oxide ; 104-105: 44-50, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32891752

RESUMO

We recently reported that hydrogen sulfide (H2S) is a possible relaxation factor in the rat bladder. However, there is no available information about the roles of central H2S in the micturition reflex, so we investigated the effects of centrally administered GYY4137 (H2S donor) and AOAA (H2S synthesis inhibitor) on the micturition reflex in urethane-anesthetized (0.8 g/kg, ip) male Wistar rats. Cystometry was performed before and after the administration of GYY4137 (3 or 10 nmol/rat, icv) or AOAA (30 or 100 µg/rat, icv). In some rats, SR95531 (GABAA receptor antagonist, 0.1 nmol/rat, icv) or SCH50911 (GABAB receptor antagonist, 0.1 nmol/rat, icv) was administered 30 min before GYY4137 administration (10 nmol/rat, icv). Centrally administered GYY4137 dose-dependently prolonged the intercontraction intervals (ICI) without altering maximum voiding pressure (MVP). On the other hand, centrally administered AOAA dose-dependently shortened ICI without altering MVP. The AOAA (30 µg/rat, icv)-induced ICI shortening was reversed in the central presence of GYY4137 (10 nmol/rat, icv). Centrally pretreated SR95531 or SCH50911 significantly attenuated the GYY4137 (10 nmol/rat, icv)-induced prolongation of ICI, respectively. These findings suggest that endogenous brain H2S can inhibit the rat micturition reflex via both GABAA and GABAB receptors in the brain.


Assuntos
Encéfalo/metabolismo , Sulfeto de Hidrogênio/metabolismo , Receptores de GABA/metabolismo , Reflexo/efeitos dos fármacos , Micção/efeitos dos fármacos , Ácido Amino-Oxiacético/farmacologia , Animais , Masculino , Morfolinas/farmacologia , Contração Muscular/fisiologia , Compostos Organotiofosforados/farmacologia , Ratos Wistar , Bexiga Urinária/fisiologia
9.
Neurourol Urodyn ; 39(6): 1687-1699, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32558992

RESUMO

AIM: Brain nitric oxide (NO) have been reported in regulation of the sympatho-adrenomedullary system, which can affect voiding and storage functions. Therefore, we investigated effects of intracerebroventricularly (icv) administered 3-(4-morpholinyl)sydnonimine, hydrochloride (SIN-1) (NO donor) on the micturition reflex, focusing on their dependence on the sympatho-adrenomedullary system and on brain N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors in urethane-anesthetized (0.8 g/kg, ip) male Wistar rats. METHODS: Plasma noradrenaline and adrenaline were measured just before and 5 minutes after SIN-1 administration. Evaluation of urodynamic parameters was started 1 hour before SIN-1 administration or intracerebroventricular pretreatment with other drugs. RESULTS: SIN-1 (100 and 250 µg/animal) elevated plasma adrenaline and reduced intercontraction interval ([ICI] values; 110.5% [SIN-1, 0 µg] and 54.9% [SIN-1, 250 µg] during 15 minutes after SIN-1 administration [P < .05; Î·2 = 0.59]) without affecting plasma noradrenaline or maximal voiding pressure. SIN-1 (250 µg/animal) reduced single-voided volume and bladder capacity without affecting post-voiding residual volume. The SIN-1 (250 µg/animal)-induced adrenaline elevation and ICI reduction were attenuated by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, sodium salt (carboxy-PTIO) (NO scavenger, icv) (ICI values; 44.7% [vehicle + SIN-1] and 77.5% [carboxy-PTIO + SIN-1] during 15 minutes after SIN-1 administration [P < .05; Î·2 = 0.51]). Acute bilateral adrenalectomy abolished SIN-1-induced adrenaline elevation, while showed no effect on the SIN-1-induced ICI reduction. The ICI reduction was attenuated by MK-801 (NMDA receptor antagonist, icv) (ICI values; 47.0% [vehicle + SIN-1] and 87.6% [MK-801 + SIN-1] during 15 minutes after SIN-1 administration [P < .05; Î·2 = 0.61]), but not by DNQX (AMPA receptor antagonist, icv). CONCLUSION: Brain NO is involved in facilitation of the rat micturition reflex through brain NMDA receptors, independently of the sympatho-adrenomedullary outflow modulation.


Assuntos
Encéfalo/efeitos dos fármacos , Óxido Nítrico/metabolismo , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Micção/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Maleato de Dizocilpina/farmacologia , Epinefrina/sangue , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Molsidomina/análogos & derivados , Molsidomina/farmacologia , Doadores de Óxido Nítrico/farmacologia , Norepinefrina/sangue , Quinoxalinas/farmacologia , Ratos , Ratos Wistar , Reflexo/efeitos dos fármacos , Reflexo/fisiologia , Micção/fisiologia
10.
Nihon Yakurigaku Zasshi ; 155(2): 74-79, 2020.
Artigo em Japonês | MEDLINE | ID: mdl-32115481

RESUMO

Recently, hydrogen sulfide (H2S) has been recognized as the third gasotransmitter besides nitric oxide and carbon monoxide, and it has been reported that H2S exhibits various physiological functions such as neuromodulation and vasorelaxation. In the lower urinary tract (bladder and prostate), it is reported that donors of H2S induce contraction of the rat detrusor and relaxation of the pig bladder neck. These reports suggest a possibility that H2S may have site-specific effects on the bladder. However, the detailed functions of H2S in each part of the bladder are still unclear. In addition, there is no report showing physiological roles of H2S in the prostate. In this article, we will review the distribution of enzymes related to H2S biosynthesis and physiological roles of H2S in the lower urinary tract based on reports from our and other groups. We will also introduce a possibility that H2S can be a new therapeutic target against lower urinary tract symptoms (LUTS) based on our data from spontaneously hypertensive rats (SHRs), which develop hypertension-mediated LUTS.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Próstata/fisiologia , Bexiga Urinária/fisiologia , Animais , Masculino , Ratos , Ratos Endogâmicos SHR , Suínos
11.
Clin Exp Pharmacol Physiol ; 47(7): 1254-1262, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32141630

RESUMO

Excessive activation of the sympatho-adrenomedullary system plays a pathogenic role in triggering and sustaining essential hypertension. We previously reported that, in normotensive rats, intracerebroventricularly (i.c.v.) administered neuropeptides, corticotropin-releasing factor and bombesin induced activation of the sympatho-adrenomedullary system, and that brain cannabinoid CB1 receptors negatively regulated this activation. In this study, we investigated the effects of brain CB1 receptor stimulation on blood pressure and the sympatho-adrenomedullary outflow in spontaneously hypertensive rats (SHRs), commonly used animal models of essential hypertension, and in Wistar-Kyoto (WKY) rats, normotensive controls of SHRs. In 18-week-old SHRs and WKY rats under urethane anaesthesia (1.0 g/kg, i.p.), SHRs exhibited significantly higher systolic, mean and diastolic blood pressures and plasma noradrenaline and adrenaline, and a lower heart rate than WKY rats. Single administration of arachidonyl 2'-chloroethylamide (ACEA, CB1 agonist, 1.4 µmol/animal, i.c.v.) significantly but partially reduced mean and diastolic blood pressures and the plasma level of noradrenaline in SHRs compared to vehicle (N,N-dimethylformamide)-treated SHRs. These ACEA-induced reductions were abolished by central pretreatment with rimonabant (CB1 antagonist, 300 nmol/animal, i.c.v.), which alone showed no significant effect on blood pressures or plasma noradrenaline and adrenaline levels of SHRs. On the other hand, ACEA had no significant effect on blood pressure or plasma noradrenaline and adrenaline levels in WKY rats. These results suggest that stimulation of brain CB1 receptors can ameliorate hypertension accompanied by enhanced sympathetic outflow without affecting blood pressure under normotensive conditions.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Ácidos Araquidônicos/farmacologia , Ácidos Araquidônicos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Epinefrina/sangue , Hipertensão/sangue , Hipertensão/fisiopatologia , Masculino , Ratos , Ratos Endogâmicos SHR
12.
Int Urol Nephrol ; 51(9): 1507-1515, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31289981

RESUMO

PURPOSE: To compare hydrogen sulfide (H2S)-induced relaxation on the bladder between normotensive and spontaneously hypertensive rat (SHR), we evaluated the effects of H2S donors (GYY4137 and NaHS) on the micturition reflex and on the contractility of bladder tissues. We also investigated the content of H2S and the expression levels of enzymes related to H2S biosynthesis [cystathionine ß-synthase (CBS), 3-mercaptopyruvate sulfurtransferase (MPST), and cysteine aminotransferase (CAT)] in the bladder. METHODS: Eighteen-week-old male normotensive Wistar rats and SHRs were used. Under urethane anesthesia, the effects of intravesically instilled GYY4137 (10-8, 10-7 and 10-6 M) on the micturition reflex were evaluated by cystometry. The effects of NaHS (1 × 10-8-3 × 10-4 M) were evaluated on carbachol (10-5 M)-induced pre-contracted bladder strips. Tissue H2S content was measured by the methylene blue method. The expression levels of these enzymes were investigated by Western blot. RESULTS: GYY4137 significantly prolonged intercontraction intervals in Wistar rats, but not in SHRs. NaHS-induced relaxation on pre-contracted bladder strips was significantly attenuated in SHRs compared with Wistar rats. The H2S content in the bladder of SHRs was significantly higher than that of Wistar rats. CBS, MPST and CAT were detected in the bladder of Wistar rats and SHRs. The expression levels of MPST in the SHR bladder were significantly higher than those in the Wistar rat bladder. CONCLUSION: H2S-induced bladder relaxation in SHRs is impaired, thereby resulting in a compensatory increase of the H2S content in the SHR bladder.


Assuntos
Sulfeto de Hidrogênio/farmacologia , Hipertensão/fisiopatologia , Relaxamento Muscular/efeitos dos fármacos , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiopatologia , Animais , Masculino , Ratos Endogâmicos SHR , Ratos Wistar , Micção/efeitos dos fármacos
13.
Neurourol Urodyn ; 37(8): 2519-2526, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30095194

RESUMO

AIMS: To clarify the roles of hydrogen sulfide (H2 S), an endogenous gasotransmitter, in the rat bladder and prostate, we investigated the distribution of enzymes related to H2 S biosynthesis (cystathionine ß-synthase [CBS], cystathionine γ-lyase [CSE], 3-mercaptopyruvate sulfurtransferase [MPST], cysteine aminotransferase [CAT], and D-amino acid oxidase [DAO]) and the content of H2 S. We also investigated the effects of H2 S donors (NaHS and GYY4137) on the contractility of both tissues and on micturition. METHODS: The distribution of these enzymes was investigated by real-time PCR, Western blot, and immunohistochemistry. Tissue H2 S content was measured by the methylene blue method. The effects of NaHS (1 × 10-9 to 3 × 10-4 M) were evaluated on carbachol (10-5 M)-induced pre-contracted bladder strips, and on noradrenaline (10-5 M)-induced pre-contracted prostate strips, which were pretreated with propranolol (10-6 M). In addition, in urethane-anesthetized male Wistar rats, the effects of intravesically instilled GYY4137 (10-8 , 10-7 , and 10-6 M) on micturition were evaluated by cystometry. RESULTS: MPST and CAT were detected in the bladder and prostate, CBS was only detected in the prostate, while CSE and DAO were not detected in both tissues. Immunoreactivity of these enzymes was mainly detected in the urothelium and smooth muscle layer of the bladder and in the prostate glandular epithelium. H2 S was detected in both tissues. NaHS dose-dependently induced relaxation of pre-contracted bladder and prostate strips. Intravesically instilled GYY4137 significantly prolonged intercontraction intervals. CONCLUSIONS: It is possible that H2 S can function as an endogenous relaxation factor in the rat bladder and prostate.


Assuntos
Sulfeto de Hidrogênio , Relaxamento Muscular/fisiologia , Próstata/fisiologia , Bexiga Urinária/fisiologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Carbacol/farmacologia , Sulfeto de Hidrogênio/farmacologia , Masculino , Morfolinas/farmacologia , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Norepinefrina/farmacologia , Compostos Organotiofosforados/farmacologia , Parassimpatomiméticos/farmacologia , Propranolol/farmacologia , Ratos , Ratos Wistar , Simpatomiméticos/farmacologia , Micção/efeitos dos fármacos
14.
Br J Pharmacol ; 175(19): 3758-3772, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30007012

RESUMO

BACKGROUND AND PURPOSE: We have demonstrated that i.c.v.-administered (±)-epibatidine, a nicotinic ACh receptor (nAChR) agonist, induced secretion of noradrenaline and adrenaline (catecholamines) from the rat adrenal medulla with dihydro-ß-erythroidin (an α4ß2 nAChR antagonist)-sensitive brain mechanisms. Here, we examined central mechanisms for the (±)-epibatidine-induced responses, focusing on brain NOS and NO-mediated mechanisms, soluble GC (sGC) and protein S-nitrosylation (a posttranslational modification of protein cysteine thiol groups), in urethane-anaesthetized (1.0 g·kg-1 , i.p.) male Wistar rats. EXPERIMENTAL APPROACH: (±)-Epibatidine was i.c.v. treated after i.c.v. pretreatment with each inhibitor described below. Then, plasma catecholamines were measured electrochemically after HPLC. Immunoreactivity of S-nitrosylated cysteine (SNO-Cys) in α4 nAChR subunit (α4)-positive spinally projecting neurones in the rat hypothalamic paraventricular nucleus (PVN, a regulatory centre of adrenomedullary outflow) after i.c.v. (±)-epibatidine administration was also investigated. KEY RESULTS: (±)-Epibatidine-induced elevation of plasma catecholamines was significantly attenuated by L-NAME (non-selective NOS inhibitor), carboxy-PTIO (NO scavenger), BYK191023 [selective inducible NOS (iNOS) inhibitor] and dithiothreitol (thiol-reducing reagent), but not by 3-bromo-7-nitroindazole (selective neuronal NOS inhibitor) or ODQ (sGC inhibitor). (±)-Epibatidine increased the number of spinally projecting PVN neurones with α4- and SNO-Cys-immunoreactivities, and this increment was reduced by BYK191023. CONCLUSIONS AND IMPLICATIONS: Stimulation of brain nAChRs can induce elevation of plasma catecholamines through brain iNOS-derived NO-mediated protein S-nitrosylation in rats. Therefore, brain nAChRs (at least α4ß2 subtype) and NO might be useful targets for alleviation of catecholamines overflow induced by smoking.


Assuntos
Medula Suprarrenal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico/antagonistas & inibidores , Piridinas/farmacologia , Receptores Nicotínicos/metabolismo , Medula Suprarrenal/metabolismo , Animais , Encéfalo/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Catecolaminas/sangue , Catecolaminas/metabolismo , Infusões Intraventriculares , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Piridinas/administração & dosagem , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA