Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(24): 39454-39464, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38041267

RESUMO

An approach to generating chaotic signals with low time-delay signatures (TDSs) from a semiconductor laser (SCL) is proposed and demonstrated based on optoelectronic hybrid feedback. Through using a chirped fiber Bragg grating (CFBG) to provide distributed feedback, a chaotic signal with a low TDS is generated from the SCL. With the assistance of the nonlinear optoelectronic feedback provided by a microwave photonic link, the relaxation oscillation effect in the SCL is effectively suppressed, and the periodicity of the oscillation is greatly weakened. Hence, the TDS of the generated chaotic signal from the SCL is further suppressed, and the effective bandwidth is enlarged. Both simulation and experiment are carried out to verify the feasibility of the proposed scheme to suppress the TDS. In the experiment, a chaotic signal with a large effective bandwidth of 12.93 GHz, an extremely high permutation entropy (PE) of 0.9983, and a low TDS of 0.04, is generated by using a CFBG with a dispersion coefficient of 22.33 ps/nm. This TDS value is at the same level as that obtained by using the SCL-based scheme relying solely on distributed feedback in a CFBG with a dispersion coefficient of 2000 ps/nm.

2.
Opt Express ; 31(2): 1656-1665, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785196

RESUMO

A self-referenced method based on heterodyne carrier mapping is proposed to characterize the modulation efficiency of high-speed electro-optic phase modulators (EOPMs). The heterodyne carrier mapping replicates the optical carrier after phase modulation to an electrical replica, which enables observing the power variation of the optical carrier at a fixed low-frequency in the electrical domain. The modulation depths and half-wave voltages within the frequency range of up to 40 GHz are determined by measuring the amplitude ratio of the mapped low-frequency component at 80 MHz in the cases of on and off single-tone modulation of the EOPM. The measured results are compared to those obtained with the traditional optical spectrum analysis method and the electrical spectrum sweep method to check the consistency and accuracy. Surpassing the heterodyne spectrum mapping (HSM) scheme, our method only requires a single-tone driving of the EOPM under test and completely avoids the roll-off responsivity of the photodetector through the fixed low-frequency detection.

3.
Opt Express ; 30(22): 40337-40346, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36298968

RESUMO

A self-reference and on-chip method for extracting the intrinsic frequency responses including modulation index and half-wave voltage of electro-optic modulator (EOM) chips is proposed based on photonic down-conversion sampling and microwave fixture de-embedding. The photonic down-conversion sampling is firstly employed to extract the combined response of the source network SxN, the adapter network SAN and the EOM chip. Then the Open-Short-Load (OSL) calibration is exploited to realize the on-chip microwave de-embedding of SxN and SAN in terms of the transmission attenuation and the impedance mismatch. Finally, the power leveling technique is used to track the incident microwave power to obtain the intrinsic half-wave voltage of the EOM chip. Our method features self-reference and on-chip capability, which is applicable for the EOM chips even without a good impedance match, and is free of any extra optical/electrical (O/E) transducer standard, which will be helpful to chip evaluation and packaging optimization.

4.
Opt Express ; 28(12): 17782-17792, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32679981

RESUMO

A flexible ultra-wide frequency photonic-assisted method is proposed for microwave harmonic down-conversion based on re-circulating four-wave mixing (RFWM) in a semiconductor optical amplifier (SOA). The proposed down-converter consists of a RF-driven electro-optic modulator (EOM) and a RFWM-intensified optical local oscillator (LO) located in a ring-assisted Mach-Zehnder interferometer (R-MZI). In the optical LO, the optical carrier is first modulated by a low-frequency electrical LO through an EOM for triggering high-order harmonics sideband generation in the optical domain through the FWM effect in the SOA, and the generated harmonics sidebands are further intensified by re-circulating the FWM products back to the EOM and the SOA successively with an amplified ring loop. The RFWM-intensified optical LO enables accurate tunable and ultra-wide frequency operation of down-conversion by simply adjusting the low-frequency electrical LO. In the experiment, the RFWM-based optical LO is operated with wide spectrum of more than 0.8 nm (15-dB bandwidth) and 1.2 nm (20-dB bandwidth) and tunable frequency spacing from 4 GHz to 12 GHz. The microwave frequency conversion is successfully demonstrated in the RF range of 5-40 GHz down-converted to IF band below 2 GHz with a low-frequency electrical LO at about 4.8 GHz.

5.
Opt Express ; 27(17): 23714-23724, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31510272

RESUMO

A cross-referenced and deadband-free method with photonic harmonic down-conversion is proposed for microwave frequency measurement based on cascaded-four-wave-mixing (CFWM) in semiconductor optical amplifiers. The proposed method enables ultra-wide and accurate frequency measurement with low-frequency spectrum detection, and at the same time achieves deadband-free and multi-tone frequency measurement by cross-referenced frequency discrimination. For a proof of concept, microwave signal measurement is experimentally demonstrated up to the 40 GHz frequency range with an 0.2-MHz measurement error. The frequency measurement features ease of configuration by only changing the low-frequency electrical local oscillators of the CFWM-based photonic harmonic down-converter.

6.
Opt Express ; 25(12): 13286-13295, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28788864

RESUMO

The stable multipulse emission from an erbium-doped mode-locked fiber laser in dissipative soliton resonance (DSR) regime is numerically and experimentally investigated. It shows that in the multipulse operation of DSR, all pulses have identical characteristics. The number of these pulses is determined by the initial conditions, and keeps constant with the growth of pump power. Experimental results match well with the theoretical simulations. In the experiment, we obtain as high as 86 dual-wavelength DSR pulses, which have the same characteristics and are equally spaced in the cavity. Since the pulses behave similarly to harmonic mode-locking (HML), we call this phenomenon HML under DSR. By properly adjusting the polarization controllers, other numbers of multipulse emission in DSR region can be observed, which confirms that the number of DSR pulses depends on the initial conditions.

7.
Opt Lett ; 41(3): 460-3, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26907397

RESUMO

A calibration-free electrical method is demonstrated for measuring the frequency response of high-speed Mach-Zehnder modulators (MZMs) based on low-frequency detection. The method achieves the high-frequency modulation index and half-wave voltage measurement of MZMs by the low-frequency electrical spectrum analysis of the two-tone and bias-modulated optical signal. Moreover, it eliminates the need for correcting the responsivity fluctuation in the photodetector through setting a specific frequency relationship between the two-tone and bias modulation. Both absolute and relative frequency response of MZMs are experimentally measured with our method and compared with those obtained with conventional methods to check for consistency.

8.
Opt Lett ; 40(20): 4727-30, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26469605

RESUMO

A calibration-free electrical method is proposed for measuring the absolute frequency response of directly modulated semiconductor lasers based on additional modulation. The method achieves the electrical domain measurement of the modulation index of directly modulated lasers without the need for correcting the responsivity fluctuation in the photodetection. Moreover, it doubles measuring frequency range by setting a specific frequency relationship between the direct and additional modulation. Both the absolute and relative frequency response of semiconductor lasers are experimentally measured from the electrical spectrum of the twice-modulated optical signal, and the measured results are compared to those obtained with conventional methods to check the consistency. The proposed method provides calibration-free and accurate measurement for high-speed semiconductor lasers with high-resolution electrical spectrum analysis.

9.
Opt Lett ; 40(12): 2854-7, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26076279

RESUMO

An extinction-ratio-independent electrical method is proposed for measuring chirp parameters of Mach-Zehnder electric-optic intensity modulators based on frequency-shifted optical heterodyne. The method utilizes the electrical spectrum analysis of the heterodyne products between the intensity modulated optical signal and the frequency-shifted optical carrier, and achieves the intrinsic chirp parameters measurement at microwave region with high-frequency resolution and wide-frequency range for the Mach-Zehnder modulator with a finite extinction ratio. Moreover, the proposed method avoids calibrating the responsivity fluctuation of the photodiode in spite of the involved photodetection. Chirp parameters as a function of modulation frequency are experimentally measured and compared to those with the conventional optical spectrum analysis method. Our method enables an extinction-ratio-independent and calibration-free electrical measurement of Mach-Zehnder intensity modulators by using the high-resolution frequency-shifted heterodyne technique.

10.
Opt Lett ; 39(12): 3504-7, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978522

RESUMO

We propose a self-calibrating method for high-frequency response measurement of electro-optic phase modulators based on two-tone modulation. The method utilizes the electrical domain measurement of heterodyning spectrum between the two-tone modulation optical signal and the frequency-shifted optical carrier, and eliminates the need to correct the responsivity fluctuation in the photodetection. High-frequency modulation depth and half-wave voltages are measured and compared to those with the traditional optical spectrum analysis method in the experimental demonstration. The proposed method enables calibration-free and accurate frequency response measurement of electro-optic phase modulators by using high-resolution electrical spectrum analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA