Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Mod Pathol ; : 100518, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763420

RESUMO

Appropriate classification of fusion-driven bone and soft tissue neoplasms continues to evolve, often relying on the careful integration of morphologic findings with immunohistochemical, molecular, and clinical data. Herein, we present three cases of a morphologically distinct myxoid mesenchymal neoplasm with myogenic differentiation and novel CRTC1::MRTFB (formerly MKL2) gene fusion. Three tumors occurred in 2 female and 1 male patient with a median age of 72 (range: 28-78). Tumors involved the left iliac bone, the right thigh, and the left perianal region with a median size of 4.0 cm (4.0-7.6 cm). While one tumor presented as an incidental finding, the other two tumors were noted given their persistent growth. At the time of last follow-up, one patient was alive with unresected disease at 6 months, one patient was alive without evidence of disease at 12 months after surgery and one patient died of disease 24 months after diagnosis. On histologic sections, the tumors showed multinodular growth and were composed of variably cellular spindle to round-shaped cells with distinct brightly eosinophilic cytoplasm embedded within a myxoid stroma. One tumor showed overt smooth muscle differentiation. Cytologic atypia and mitotic activity ranged from minimal (2 cases) to high (1 case). By immunohistochemistry, the neoplastic cells expressed focal smooth muscle actin, h-caldesmon, and desmin in all tested cases. Skeletal muscle markers were negative. Next-generation sequencing detected nearly identical CRTC1::MRTFB gene fusions in all cases. We suggest that myxoid mesenchymal tumors with myogenic differentiation harboring a CRTC1::MRTFB fusion may represent a previously unrecognized, distinctive entity that involves soft tissue and bone. Continued identification of these novel myxoid neoplasms with myogenic differentiation will be important in determining appropriate classification, understanding biologic potential, and creating treatment paradigms.

3.
Biomedicines ; 12(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540211

RESUMO

Complex structural chromosome abnormalities such as chromoanagenesis have been reported in acute myeloid leukemia (AML). They are usually not well characterized by conventional genetic methods, and the characterization of chromoanagenesis structural abnormalities from short-read sequencing still presents challenges. Here, we characterized complex structural abnormalities involving chromosomes 2, 3, and 7 in an AML patient using an integrated approach including CRISPR/Cas9-mediated nanopore sequencing, mate pair sequencing (MPseq), and SNP microarray analysis along with cytogenetic methods. SNP microarray analysis revealed chromoanagenesis involving chromosomes 3 and 7, and a pseudotricentric chromosome 7 was revealed by cytogenetic methods. MPseq revealed 138 structural variants (SVs) as putative junctions of complex rearrangements involving chromosomes 2, 3, and 7, which led to 16 novel gene fusions and 33 truncated genes. Thirty CRISPR RNA (crRNA) sequences were designed to map 29 SVs, of which 27 (93.1%) were on-target based on CRISPR/Cas9 crRNA nanopore sequencing. In addition to simple SVs, complex SVs involving over two breakpoints were also revealed. Twenty-one SVs (77.8% of the on-target SVs) were also revealed by MPseq with shared SV breakpoints. Approximately three-quarters of breakpoints were located within genes, especially intronic regions, and one-quarter of breakpoints were intergenic. Alu and LINE repeat elements were frequent among breakpoints. Amplification of the chromosome 7 centromere was also detected by nanopore sequencing. Given the high amplification of the chromosome 7 centromere, extra chromosome 7 centromere sequences (tricentric), and more gains than losses of genomic material, chromoanasynthesis and chromothripsis may be responsible for forming this highly complex structural abnormality. We showed this combination approach's value in characterizing complex structural abnormalities for clinical and research applications. Characterization of these complex structural chromosome abnormalities not only will help understand the molecular mechanisms responsible for the process of chromoanagenesis, but also may identify specific molecular targets and their impact on therapy and overall survival.

4.
Am J Med Genet A ; 194(2): 253-267, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37807876

RESUMO

Ring chromosomes (RCs) are a structural aberration that can be tolerated better in acrocentric or gonosomal chromosomes. Complete RCs arise from telomere-telomere fusions. Alternatively, genomic imbalances corresponding to the ends of the chromosomal arms can be seen with RC formation. RCs are unstable in mitosis, result in mosaicism, and are associated with a "ring syndrome," which presents with growth and development phenotypes and differs from those features more frequently observed with pure terminal copy number changes. Due to variability in mosaicism, size, and genomic content, clear genotype-phenotype correlations may not always be possible. Given the rarity of RCs, this historical data is invaluable. We performed a retrospective review of individuals bearing RCs to investigate the incidence in our laboratory. This work details the methods and features seen in association with twenty-three autosomal RCs. In decreasing order, the most frequently seen autosomal RCs were 18, 22, 4, 13, 17, and 9. The additional cases detail clinical and cytogenomic events similar to those reported in RCs. As methodologies advance, insights may be gleaned from following up on these cases to improve genotype-phenotype correlations and understand the cryptic differences or other predisposing factors that lead to ring formation and development.


Assuntos
Cromossomos em Anel , Humanos , Hibridização in Situ Fluorescente , Mosaicismo , Fenótipo , Hospitais
5.
Genes Chromosomes Cancer ; 63(1): e23209, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37870842

RESUMO

Smooth muscle tumors are the most common mesenchymal tumors of the female genital tract, including the vulva. Since vulvar smooth muscle tumors are rare, our understanding of them compared to their uterine counterparts continues to evolve. Herein, we present two cases of morphologically distinct myxoid epithelioid smooth muscle tumors of the vulva with novel MEF2D::NCOA2 gene fusion. The tumors involved 24 and 37-year-old women. Both tumors presented as palpable vulvar masses that were circumscribed, measuring 2.8 and 5.1 cm in greatest dimension. Histologically, they were composed of epithelioid to spindle-shaped cells with minimal cytologic atypia and prominent myxoid matrix. Rare mitotic figures were present (1-3 mitotic figures per 10 high-power field (HPF)), and no areas of tumor necrosis were identified. By immunohistochemistry, the neoplastic cells strongly expressed smooth muscle actin, calponin, and desmin, confirming smooth muscle origin. Next-generation sequencing identified identical MEF2D::NCOA2 gene fusions. These two cases demonstrate that at least a subset of myxoid epithelioid smooth muscle tumors of the vulva represent a distinct entity characterized by a novel MEF2D::NCOA2 gene fusion. Importantly, recognition of the distinct morphologic and genetic features of these tumors is key to understanding the biological potential of these rare tumors.


Assuntos
Tumor de Músculo Liso , Adulto , Feminino , Humanos , Adulto Jovem , Biomarcadores Tumorais/genética , Fusão Gênica , Fatores de Transcrição MEF2/genética , Coativador 2 de Receptor Nuclear/genética , Tumor de Músculo Liso/patologia , Vulva/patologia
6.
Mod Pathol ; 37(3): 100418, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38158126

RESUMO

Desmoplastic small round cell tumor (DSRCT) is a high-grade, primitive round cell sarcoma classically associated with prominent desmoplastic stroma, coexpression of keratin and desmin, and a characteristic EWSR1::WT1 gene fusion. DSRCT typically arises in the abdominopelvic cavity of young males with diffuse peritoneal spread and poor overall survival. Although originally considered to be pathognomonic for DSRCT, EWSR1::WT1 gene fusions have recently been detected in rare tumors lacking the characteristic morphologic and immunohistochemical features of DSRCT. Here, we report 3 additional cases of neoplasms other than conventional DSCRCT with EWSR1::WT1 gene fusions that occurred outside the female genital tract. Two occurred in the abdominopelvic cavities of a 27-year-old man and a 12-year-old girl, whereas the third arose in the axillary soft tissue of an 85-year-old man. All cases lacked prominent desmoplastic stroma and were instead solid and cystic with peripheral fibrous pseudocapsules and occasional intervening fibrous septa. Necrosis was either absent (1/3) or rare (2/3), and mitotic activity was low (<1 to 3 per 10 hpf). In immunohistochemical studies, there was expression of smooth muscle actin (3/3) and desmin (3/3), rare to focal reactivity for EMA (2/3), and variable expression of CK AE1/AE3 (1/3). Myogenin and MyoD1 were negative, and C-terminus-specific WT1 was positive in both cases tested (2/2). All 3 tumors followed a more indolent clinical course with 2 cases demonstrating no evidence of disease at 20 and 44 months after resection. The patient from case 3 died of other causes at 14 months with no evidence of recurrence. DNA methylation profiling showed that the 3 cases clustered with DSRCT; however, they demonstrated fewer copy number variations with 2 cases having a flat profile (0% copy number variation). Differential methylation analysis with hierarchical clustering further showed variation between the 3 cases and conventional DSRCT. Although further study is needed, our results, in addition to previous reports, suggest that EWSR1::WT1 gene fusions occur in rare and seemingly distinctive tumors other than conventional DSRCT with indolent behavior. Proper classification of these unusual soft tissue tumors with EWSR1::WT1 gene fusions requires direct correlation with tumor morphology and clinical behavior, which is essential to avoid overtreatment with aggressive chemotherapy.


Assuntos
Tumor Desmoplásico de Pequenas Células Redondas , Neoplasias de Tecidos Moles , Masculino , Humanos , Feminino , Criança , Idoso de 80 Anos ou mais , Adulto , Variações do Número de Cópias de DNA , Tumor Desmoplásico de Pequenas Células Redondas/genética , Tumor Desmoplásico de Pequenas Células Redondas/patologia , Desmina , Genitália Feminina/química , Genitália Feminina/metabolismo , Genitália Feminina/patologia , Proteínas de Fusão Oncogênica/análise , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Proteínas WT1/genética
7.
Cancers (Basel) ; 15(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38001699

RESUMO

Ring chromosomes (RC) are present in <10% of patients with hematological malignancies and are associated with poor prognosis. Until now, only small cohorts of patients with hematological neoplasms and concomitant RCs have been cytogenetically characterized. Here, we performed a conventional chromosome analysis on metaphase spreads from >13,000 patients diagnosed with hematological malignancies at the Johns Hopkins University Hospital and identified 98 patients with RCs-90 with myeloid malignancies and 8 with lymphoid malignancies. We also performed a targeted Next-Generation Sequencing (NGS) assay, using a panel of 642 cancer genes, to identify whether these patients harbor relevant pathogenic variants. Cytogenetic analyses revealed that RCs and marker chromosomes of unknown origin are concurrently present in most patients by karyotyping, and 93% of patients with NGS data have complex karyotypes. A total of 72% of these individuals have pathogenic mutations in TP53, most of whom also possess cytogenetic abnormalities resulting in the loss of 17p, including the loss of TP53. All patients with a detected RC and without complex karyotypes also lack TP53 mutations but have pathogenic mutations in TET2. Further, 70% of RCs that map to a known chromosome are detected in individuals without TP53 mutations. Our data suggest that RCs in hematological malignancies may arise through different mechanisms, but ultimately promote widespread chromosomal instability.

9.
Virchows Arch ; 483(5): 665-675, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37548750

RESUMO

AIMS: Cutaneous syncytial myoepithelioma (CSM) is a rare myoepithelioma variant of skin, characterized by intradermal syncytial growth of spindle cells with a distinct immunophenotype of EMA and S100 positivity and infrequent keratin expression. While CSM was first described as a cutaneous tumor, singular non-cutaneous cases have since been reported in bone. We aimed to investigate the clinicopathological features of this variant across all anatomic sites through a large multi-institutional study. METHODS AND RESULTS: We complied a total of 24 myoepitheliomas with syncytial growth from our files. The tumors occurred in 12 male and 12 female patients (M:F = 1:1), with a median age of 31 years (range, 9-69 years). While the majority of tumors (75%, n = 18) occurred in skin, a significant subset (25%, n = 6) arose in non-cutaneous sites, including bone (n = 3), bronchus/trachea (n = 2), and interosseous membrane of tibia/fibula (n = 1). Tumor size ranged from 0.4 to 5.9 cm. Clinical follow-up (7 patients; range 14-202 months; median 56.5 months) showed a single local recurrence 8 years after incomplete skin excision but no metastases; all patients were alive at the time of last follow-up without evidence of disease. Histologically, all tumors were pink at low-power and characterized by a syncytial growth of bland ovoid, spindled, or histiocytoid cells with eosinophilic cytoplasm and prominent perivascular lymphoplasmacytic inflammation. One-third displayed adipocytic metaplasia (8/24). Rare cytologic atypia was seen but was not associated with increased mitotic activity. All tumors expressed S100, SMA, and/or EMA. Keratin expression was absent in most cases. Molecular analysis was performed in 16 cases, all showing EWSR1-rearrangments. In total, 15/15 (100%) harbored an EWSR1::PBX3 fusion, whereas 1 case EWSR1 FISH was the only molecular study performed. CONCLUSION: Syncytial myoepithelioma is a rare but recognizable morphologic variant of myoepithelioma which may have a predilection for skin but also occurs in diverse non-cutaneous sites. Our series provides evidence supporting a reappraisal of the term "cutaneous syncytial myoepithelioma," as 25% of patients in our series presented with non-cutaneous tumors; thus, we propose the term "syncytial myoepithelioma" to aid pathologist recognition and avoidance of potentially confusing terminology when referring to non-cutaneous examples. The behavior of syncytial myoepithelioma, whether it arises in cutaneous or non-cutaneous sites, is indolent and perhaps benign with a small capacity for local recurrence.


Assuntos
Mioepitelioma , Neoplasias Epiteliais e Glandulares , Neoplasias Cutâneas , Humanos , Masculino , Feminino , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Mioepitelioma/patologia , Biomarcadores Tumorais/análise , Neoplasias Cutâneas/patologia , Queratinas
10.
Genes (Basel) ; 14(6)2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37372318

RESUMO

Ewing sarcomas (ES) are rare small round cell sarcomas often affecting children and characterized by gene fusions involving one member of the FET family of genes (usually EWSR1) and a member of the ETS family of transcription factors (usually FLI1 or ERG). The detection of EWSR1 rearrangements has important diagnostic value. Here, we conducted a retrospective review of 218 consecutive pediatric ES at diagnosis and found eight patients having data from chromosome analysis, FISH/microarray, and gene-fusion assay. Three of these eight ES had novel complex/cryptic EWSR1 rearrangements/fusions by chromosome analysis. One case had a t(9;11;22)(q22;q24;q12) three-way translocation involving EWSR1::FLI1 fusion and 1q jumping translocation. Two cases had cryptic EWSR1 rearrangements/fusions, including one case with a cryptic t(4;11;22)(q35;q24;q12) three-way translocation involving EWSR1::FLI1 fusion, and the other had a cryptic EWSR1::ERG rearrangement/fusion on an abnormal chromosome 22. All patients in this study had various aneuploidies with a gain of chromosome 8 (75%), the most common, followed by a gain of chromosomes 20 (50%) and 4 (37.5%), respectively. Recognition of complex and/or cryptic EWSR1 gene rearrangements/fusions and other chromosome abnormalities (such as jumping translocation and aneuploidies) using a combination of various genetic methods is important for accurate diagnosis, prognosis, and treatment outcomes of pediatric ES.


Assuntos
Neoplasias Ósseas , Sarcoma de Ewing , Sarcoma , Humanos , Sarcoma de Ewing/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a Calmodulina/genética , Translocação Genética , Neoplasias Ósseas/genética , Sarcoma/genética , Aberrações Cromossômicas , Aneuploidia , Fusão Gênica , Regulador Transcricional ERG/genética , Proteína EWS de Ligação a RNA/genética
11.
bioRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37066222

RESUMO

When we transduced pancreatic cancers with sgRNAs that targeted 2-16 target sites in the human genome, we found that increasing the number of CRISPR-Cas9 target sites produced greater cytotoxicity, with >99% growth inhibition observed by targeting only 12 sites. However, cell death was delayed by 2-3 weeks after sgRNA transduction, in contrast to the repair of double strand DNA breaks (DSBs) that happened within 3 days after transduction. To explain this discrepancy, we used both cytogenetics and whole genome sequencing to interrogate the genome. We first detected chromatid and chromosome breaks, followed by radial formations, dicentric, ring chromosomes, and other chromosomal aberrations that peaked at 14 days after transduction. Structural variants (SVs) were detected at sites that were directly targeted by CRISPR-Cas9, including SVs generated from two sites that were targeted, but the vast majority of SVs (89.4%) were detected elsewhere in the genome that arose later than those directly targeted. Cells also underwent polyploidization that peaked at day 10 as detected by XY FISH assay, and ultimately died via apoptosis. Overall, we found that the simultaneous DSBs induced by CRISPR-Cas9 in pancreatic cancers caused chromosomal instability and polyploidization that ultimately led to delayed cell death.

12.
Cancers (Basel) ; 15(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36900209

RESUMO

Aneuploidy, a deviation in chromosome numbers from the normal diploid set, is now recognized as a fundamental characteristic of all cancer types and is found in 70-90% of all solid tumors. The majority of aneuploidies are generated by chromosomal instability (CIN). CIN/aneuploidy is an independent prognostic marker of cancer survival and is a cause of drug resistance. Hence, ongoing research has been directed towards the development of therapeutics aimed at targeting CIN/aneuploidy. However, there are relatively limited reports on the evolution of CIN/aneuploidies within or across metastatic lesions. In this work, we built on our previous studies using a human xenograft model system of metastatic disease in mice that is based on isogenic cell lines derived from the primary tumor and specific metastatic organs (brain, liver, lung, and spine). As such, these studies were aimed at exploring distinctions and commonalities between the karyotypes; biological processes that have been implicated in CIN; single-nucleotide polymorphisms (SNPs); losses, gains, and amplifications of chromosomal regions; and gene mutation variants across these cell lines. Substantial amounts of inter- and intra-heterogeneity were found across karyotypes, along with distinctions between SNP frequencies across each chromosome of each metastatic cell line relative the primary tumor cell line. There were disconnects between chromosomal gains or amplifications and protein levels of the genes in those regions. However, commonalities across all cell lines provide opportunities to select biological processes as druggable targets that could have efficacy against the primary tumor, as well as metastases.

13.
Cancer Genet ; 274-275: 30-32, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36966724

RESUMO

Secondary hematologic malignancies, such as B-cell acute lymphoblastic leukemia/lymphoma (B-ALL), have been reported following multiple myeloma. Tyrosine kinase inhibitors have improved clinical outcomes of patients with Philadelphia-positive (Ph+) B-ALL. Therefore, recognition of the Ph chromosome in B-ALL patients is important for both prognosis and therapies. We present a case of a secondary Ph+ B-ALL following multiple myeloma that highlights a BCR::ABL1 fusion by a gene fusion assay to reveal a cryptic Ph chromosome, which may otherwise be missed by conventional cytogenetics and typical interphase fluorescence in situ hybridization.


Assuntos
Linfoma de Burkitt , Linfoma , Mieloma Múltiplo , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Proteínas de Fusão bcr-abl/genética , Hibridização in Situ Fluorescente , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Cromossomo Filadélfia
15.
Cancer Cell Int ; 22(1): 350, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36376842

RESUMO

BACKGROUND: Human epidermal growth factor receptor 2 (HER2) positive breast carcinomas due to HER2 amplification are associated with aggressive behavior and a poor prognosis. Anti-HER2-targeted therapies are widely used to treat HER2-positive breast carcinomas with excellent outcomes. Accurate identification of HER2 amplification status in breast carcinomas is of important diagnostic and treatment value. Currently, HER2 amplification status is routinely determined by immunohistochemistry (IHC) and/or fluorescence in situ hybridization (FISH) testing. This study will review our past HER2 data to determine and characterize discordant results between HER2 IHC and FISH. It will also determine a potential impact of HER2 amplification status by next-generation sequencing (NGS) on these patients. METHODS: We reviewed a total of 4884 breast carcinomas with coexisting HER2 IHC and HER2 FISH performed at our institution from 2010 to 2022. 57 cases also had a Next-Generation-Sequencing-based (NGS) gene panel performed. Given the advances in biostatic analysis pipelines, NGS methods were utilized to provide results on HER2 amplification status along with somatic mutations. RESULTS: While the majority (ranging from 98.5% with IHC score of 0 and 93.1% with IHC score of 1 +) of 4884 breast carcinomas had concordant results from HER2 IHC and HER2 FISH testing, a small percentage of patients (ranging from 1.5% in those with IHC score of 0, to 6.9% with IHC score of 1 +) had discordant results, with negative HER2 IHC and positive HER2 FISH results. These patients could be reported as HER2-negative breast carcinomas if only HER2 IHC testing has been performed according to a current cost-effective HER2 test strategy. 57 patients had HER2 amplification status determined by NGS, and all patients had concordant results between HER2 NGS and FISH tests. A HER2-amplified breast carcinoma by NGS had a negative IHC and a positive HER2 FISH result. This case was classified as a HER2-positive breast carcinoma, had anti-HER2-targeted therapy, and achieved a complete clinical response. CONCLUSIONS: A small percentage of HER2-positive breast carcinomas are unidentified because of a negative HER2 IHC based on our current cost-effective HER2 test strategy. It is not feasible and affordable in routine clinical practice to perform HER2 FISH for the cases with negative HER2 IHC (IHC score 0 and 1 +). Therefore, NGS assays capable of simultaneously detecting both somatic mutations and HER2 amplification could provide a more comprehensive genetic profiling for breast carcinomas in a clinical setting. Identification of HER2 amplification by NGS in HER2-positive breast carcinomas with negative HER2 IHC results is important since these cases are concealed by our current cost-effective HER2 test strategy with IHC first (for all cases) and FISH reflex (only for cases with IHC score of 2 +), and would offer the opportunity for potentially beneficial anti-HER2-targeted therapies for these patients.

16.
Am J Surg Pathol ; 46(9): 1180-1195, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35796652

RESUMO

Complete hydatidiform moles (CHMs) and partial hydatidiform moles (PHMs) are abnormal gestations characterized by vesicular chorionic villi accompanied by variable trophoblastic hyperplasia, with or without embryonic development. CHMs are purely androgenetic (only paternal [P] chromosome complements), mostly homozygous/monospermic (~85%) but occasionally heterozygous/dispermic, whereas PHMs are overwhelmingly diandric triploid (2 paternal [P] and 1 maternal [M] chromosome complements) and heterozygous/dispermic (>95%). The presence of a fetus in a molar pregnancy usually indicates a PHM rather than a CHM; however, CHMs and PHMs rarely can be associated with a viable fetus or a nonmolar abortus in twin pregnancies and rare multiple gestation molar pregnancies have been reported. A "one-oocyte-model," with diploidization of dispermic triploid zygotes, has been proposed for twin CHM with coexisting fetus, and a "two-oocyte-model" has been proposed for twin PHM with coexisting fetus. Among 2447 products of conception specimens, we identified 21 cases of twin/multiple gestations with a molar component, including 20 CHMs (17 twins, 2 triplets, 1 quintuplet) and 1 PHM (twin). P57 immunohistochemistry was performed on all; DNA genotyping of molar and nonmolar components was performed on 9 twin CHMs, 1 triplet CHM, 1 quintuplet CHM, and 1 twin PHM. All CHM components were p57-negative and those genotyped were purely androgenetic. Twin CHMs had genotypes of P1M1+P2P2 in 5, P1M1+P1P1 in 1, and P1M1+P2P3 in 1, consistent with involvement of 1 oocyte and from 1 to 3 sperm-most commonly a homozygous CHM but involving 2 sperm in the whole conception-and compatible with a "one-oocyte-model." The triplet CHM was P1M1+P1P1+P2M2 and the quintuplet CHM was P1M1+P2M2+P2M2+P3M3+P4P4, consistent with involvement of 2 sperm and at least 2 oocytes for the triplet and 4 sperm and at least 3 oocytes for the quintuplet. The twin PHM had a P1M1+P2P3M2 genotype, consistent with involvement of 2 oocytes and 3 sperm. p57 immunohistochemistry is highly reliable for diagnosis of CHMs in twin/multiple gestations. Refined diagnosis of molar twin/multiple gestations is best accomplished by correlating morphology, p57 immunohistochemistry, and molecular genotyping, with the latter clarifying zygosity/parental chromosome complement contributions to these conceptions.


Assuntos
Mola Hidatiforme , Neoplasias Uterinas , Inibidor de Quinase Dependente de Ciclina p57/genética , Feminino , Genótipo , Humanos , Mola Hidatiforme/diagnóstico , Masculino , Pais , Gravidez , Sêmen , Triploidia , Neoplasias Uterinas/patologia
17.
Hum Pathol ; 126: 63-76, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35561840

RESUMO

Molecular classification of brain neoplasms is important for diagnosis, prognosis, and treatment outcome of histologically similar tumors. Oligodendroglioma is a glioma subtype characterized by 1p/19q co-deletion and IDH1/IDH2 mutations, which predict a good prognosis, responsiveness to therapy, and an improved overall survival compared to other adult gliomas. In a routine clinical setting, 1p/19q co-deletion is detected by interphase-FISH and SNP microarray, and somatic mutations are detected by targeted next-generation sequencing (NGS). The aim of this proof-of-principle study was to investigate the feasibility of using targeted NGS to simultaneously detect both 1p/19q co-deletion and somatic mutations. Among 247 consecutive patients with formalin-fixed paraffin-embedded brain tumors with various subtypes, NGS revealed 1p/19q co-deletion in 26 oligodendrogliomas and an IDH-wildtype astrocytoma, and partial loss across chromosomes 1p and 19q/whole-arm loss of 1p or 19q/copy neutral loss of heterozygosity in 11 nonoligodendrogliomas. For this 247 brain-tumor cohort, the overall sensitivity, specificity, and accuracy of detecting 1p/19q co-deletion by NGS in oligodendrogliomas were 96.2%, 99.6%, and 99.2%, respectively. The oligodendroglioma cohort had more mutations in IDH1/IDH2, CIC, FUBP1, and TERT, and fewer mutations in ATRX and TP53 than the nonoligodendroglioma cohort. This proof-of-concept study demonstrated that targeted NGS can simultaneously detect both 1p/19q co-deletion and somatic mutations, which can provide a more comprehensive genetic profiling for patients with gliomas using a single assay in a clinical setting.


Assuntos
Neoplasias Encefálicas , Glioma , Oligodendroglioma , Neoplasias Encefálicas/patologia , Aberrações Cromossômicas , Deleção Cromossômica , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 19/genética , Proteínas de Ligação a DNA/genética , Formaldeído , Glioma/genética , Glioma/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Isocitrato Desidrogenase/genética , Mutação , Oligodendroglioma/genética , Oligodendroglioma/patologia , Inclusão em Parafina , Proteínas de Ligação a RNA/genética
18.
Clin Cancer Res ; 28(15): 3296-3307, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35363262

RESUMO

PURPOSE: Patient-derived organoids (PDO) are a promising technology to support precision medicine initiatives for patients with pancreatic ductal adenocarcinoma (PDAC). PDOs may improve clinical next-generation sequencing (NGS) and enable rapid ex vivo chemotherapeutic screening (pharmacotyping). EXPERIMENTAL DESIGN: PDOs were derived from tissues obtained during surgical resection and endoscopic biopsies and studied with NGS and pharmacotyping. PDO-specific pharmacotype is assessed prospectively as a predictive biomarker of clinical therapeutic response by leveraging data from a randomized controlled clinical trial. RESULTS: Clinical sequencing pipelines often fail to detect PDAC-associated somatic mutations in surgical specimens that demonstrate a good pathologic response to previously administered chemotherapy. Sequencing the PDOs derived from these surgical specimens, after biomass expansion, improves the detection of somatic mutations and enables quantification of copy number variants. The detection of clinically relevant mutations and structural variants is improved following PDO biomass expansion. On clinical trial, PDOs were derived from biopsies of treatment-naïve patients prior to treatment with FOLFIRINOX (FFX). Ex vivo PDO pharmacotyping with FFX components predicted clinical therapeutic response in these patients with borderline resectable or locally advanced PDAC treated in a neoadjuvant or induction paradigm. PDO pharmacotypes suggesting sensitivity to FFX components were associated with longitudinal declines of tumor marker, carbohydrate-antigen 19-9 (CA-19-9), and favorable RECIST imaging response. CONCLUSIONS: PDOs established from tissues obtained from patients previously receiving cytotoxic chemotherapies can be accomplished in a clinically certified laboratory. Sequencing PDOs following biomass expansion improves clinical sequencing quality. High in vitro sensitivity to standard-of-care chemotherapeutics predicts good clinical response to systemic chemotherapy in PDAC. See related commentary by Zhang et al., p. 3176.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/uso terapêutico , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Humanos , Organoides/patologia , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Medicina de Precisão , Neoplasias Pancreáticas
19.
Cancer Genet ; 262-263: 91-94, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35149321

RESUMO

Lynch syndrome (LS) is the most common hereditary cancer syndrome involving multiple organ systems. The mutation patterns of the involved major DNA mismatch repair (MMR) genes, namely MLH1, MSH2, MSH6, and PMS2, have not been fully elucidated. Herein, we report a case of LS caused by a novel large deletion in the promoter and exons 1-13 of MLH1 gene. A 30 year-old male was admitted for dull abdominal pain for 5 months with family history significant for dominant familial colon cancer. Abdominal computed tomography (CT) revealed masses in colon, lung and liver. His-plasma CA19-9 was 1250 units/ml and CEA 133 ng/ml. Targeted liver biopsy showed metastatic adenocarcinoma. Immunocytochemically, the tumor cells were positive for CK20 and CDX2, and displayed loss of MLH1 and PMS2 expression but with intact MSH2 and MSH6 proteins. Next-generation sequencing of the liver metastasis demonstrated copy loss of MLH1 gene spanning exons 1 to 13. Further SNP array detected copy neutral loss of heterozygosity (CN-LOH) expanding the short arm of chromosome 3p21.3 to 3pter regions and a 219 kb deletion involving the promoter and first 13 exons of MLH1 gene (arr[GRCh37] 3p22.2(36,856,328_37075457)x1). Germline sequencing using a blood sample confirmed the deletion of the MLH gene including the promoter and this first 13 exons (NG_007109.2(NM_000249.3:c.(?_-198)_(1558+1_1559-1)del). In summary, we identified a novel MLH1 mutation pattern of partial deletion and CN-LOH causing LS.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Adulto , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Reparo de Erro de Pareamento de DNA , Éxons/genética , Mutação em Linhagem Germinativa , Humanos , Masculino , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Proteína 2 Homóloga a MutS/genética
20.
Oncotarget ; 12(18): 1763-1779, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34504649

RESUMO

Acute myeloid leukemia (AML) with fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) relapses with new chromosome abnormalities following chemotherapy, implicating genomic instability. Error-prone alternative non-homologous end-joining (Alt-NHEJ) DNA double-strand break (DSB) repair is upregulated in FLT3-ITD-expresssing cells, driven by c-Myc. The serine/threonine kinase Pim-1 is upregulated downstream of FLT3-ITD, and inhibiting Pim increases topoisomerase 2 (TOP2) inhibitor chemotherapy drug induction of DNA DSBs and apoptosis. We hypothesized that Pim inhibition increases DNA DSBs by downregulating Alt-NHEJ, also decreasing genomic instability. Alt-NHEJ activity, measured with a green fluorescent reporter construct, increased in FLT3-ITD-transfected Ba/F3-ITD cells treated with TOP2 inhibitors, and this increase was abrogated by Pim kinase inhibitor AZD1208 co-treatment. TOP2 inhibitor and AZD1208 co-treatment downregulated cellular and nuclear expression of c-Myc and Alt-NHEJ repair pathway proteins DNA polymerase θ, DNA ligase 3 and XRCC1 in FLT3-ITD cell lines and AML patient blasts. ALT-NHEJ protein downregulation was preceded by c-Myc downregulation, inhibited by c-Myc overexpression and induced by c-Myc knockdown or inhibition. TOP2 inhibitor treatment increased chromosome breaks in metaphase spreads in FLT3-ITD-expressing cells, and AZD1208 co-treatment abrogated these increases. Thus Pim kinase inhibitor co-treatment both enhances TOP2 inhibitor cytotoxicity and decreases TOP2 inhibitor-induced genomic instability in cells with FLT3-ITD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA