Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Chem ; 67(8): 6822-6838, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38588468

RESUMO

Weak antigens represented by MUC1 are poorly immunogenic, which greatly constrains the development of relevant vaccines. Herein, we developed a multifunctional lipidated protein as a carrier, in which the TLR1/2 agonist Pam3CSK4 was conjugated to the N-terminus of MUC1-loaded carrier protein BSA through pyridoxal 5'-phosphate-mediated transamination reaction. The resulting Pam3CSK4-BSA-MUC1 conjugate was subsequently incorporated into liposomes, which biomimics the membrane structure of tumor cells. The results indicated that this lipidated protein carrier significantly enhanced antigen uptake by APCs and obviously augmented the retention of the vaccine at the injection site. Compared with the BSA-MUC1 and BSA-MUC1 + Pam3CSK4 groups, Pam3CSK4-BSA-MUC1 evoked 22- and 11-fold increases in MUC1-specific IgG titers. Importantly, Pam3CSK4-BSA-MUC1 elicited robust cellular immunity and significantly inhibited tumor growth. This is the first time that lipidated protein was constructed to enhance antigen immunogenicity, and this universal carrier platform exhibits promise for utilization in various vaccines, holding the potential for further clinical application.


Assuntos
Lipossomos , Mucina-1 , Animais , Mucina-1/imunologia , Mucina-1/química , Camundongos , Humanos , Lipopeptídeos/química , Lipopeptídeos/imunologia , Lipopeptídeos/farmacologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/química , Soroalbumina Bovina/química , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Feminino , Camundongos Endogâmicos BALB C , Antígenos/imunologia , Linhagem Celular Tumoral
2.
Artigo em Inglês | MEDLINE | ID: mdl-36748861

RESUMO

Developing a novel and potent adjuvant with great biocompatibility for immune response augmentation is of great significance to enhance vaccine efficacy. In this work, we prepared a long-term stable, pH-sensitive, and biodegradable Mn3(PO4)2·3H2O nanoparticle (nano-MnP) by simply mixing MnCl2/NaH2PO4/Na2HPO4 solution for the first time and employed it as an immune stimulant in the bivalent COVID-19 protein vaccine comprised of wild-type S1 (S1-WT) and Omicron S1 (S1-Omicron) proteins as antigens to elicit a broad-spectrum immunity. The biological experiments indicated that the nano-MnP could effectively activate antigen-presenting cells through the cGAS-STING pathway. Compared with the conventional Alum-adjuvanted group, the nano-MnP-adjuvanted bivalent vaccine elicited approximately 7- and 8-fold increases in IgG antibody titers and antigen-specific IFN-γ secreting T cells, respectively. Importantly, antisera of the nano-MnP-adjuvanted group could effectively cross-neutralize the SARS-CoV-2 and its five variants of concern (VOCs) including Alpha, Beta, Gamma, Delta, and Omicron, demonstrating that this bivalent vaccine based on S1-WT and S1-Omicron proteins is an effective vaccine design strategy to induce broad-spectrum immune responses. Collectively, this nano-MnP material may provide a novel and efficient adjuvant platform for various prophylactic and therapeutic vaccines and provide insights for the development of the next-generation manganese adjuvant.

3.
J Med Chem ; 66(2): 1467-1483, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36625758

RESUMO

Exploring potent adjuvants and new vaccine strategies is crucial for the development of protein vaccines. In this work, we synthesized a new TLR4 agonist, structurally simplified lipid A analogue GAP112, as a potent built-in adjuvant to improve the immunogenicity of SARS-CoV-2 spike RBD protein. The new TLR4 agonist GAP112 was site-selectively conjugated on the N-terminus of RBD to construct an adjuvant-protein conjugate vaccine in a liposomal formulation. It is the first time that a TLR4 agonist is site-specifically and quantitatively conjugated to a protein antigen. Compared with an unconjugated mixture of GAP112/RBD, a two-dose immunization of the GAP112-RBD conjugate vaccine strongly activated innate immune cells, elicited a 223-fold increase in RBD-specific antibodies, and markedly enhanced T-cell responses. Antibodies induced by GAP112-RBD also effectively cross-neutralized SARS-CoV-2 variants (Delta/B.1.617.2 and Omicron/B.1.1.529). This conjugate strategy provides an effective method to greatly enhance the immunogenicity of antigen in protein vaccines against SARS-CoV-2 and other diseases.


Assuntos
COVID-19 , Lipossomos , Humanos , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Anticorpos , COVID-19/prevenção & controle , Vacinas contra COVID-19/farmacologia , SARS-CoV-2 , Receptor 4 Toll-Like , Vacinas Conjugadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA