Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
ACS Appl Mater Interfaces ; 16(17): 22102-22112, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38647245

RESUMO

Aqueous zinc-ion hybrid supercapacitors (ZHSCs) have attracted considerable attention because they are inexpensive and safe. However, the inadequate energy densities, power densities, and cycling performance of current ZHSC energy-storage devices are impediments that need to be overcome to enable the further development and commercialization of this technology. To address these issues, in this study, we prepared carbon-based ZHSCs using a series of porous carbon materials derived from Sanhua liquor lees (SLPCs). Among them, the best performance was observed for SLPC-A13, which exhibited excellent properties and a high-surface-area structure (2667 m2 g-1) with abundant micropores. The Zn//SLPC-A13 device was assembled by using 2 mol L-1 ZnSO4, SLPC-A13, and Zn foil as the electrolyte, cathode, and anode, respectively. The Zn//SLPC-A13 device delivered an ultrahigh energy density of 137 Wh kg-1 at a power density of 462 W kg-1. Remarkably, Zn//SLPC-A13 retained 100% of its specific capacitance after 120,000 cycles of long-term charge/discharge testing, with 62% retained after 250,000 cycles. This outstanding performance is primarily attributed to the SLPC-A13 carbon material, which promotes the rapid adsorption and desorption of ions, and the charge-discharge process, which roughens the Zn anode in a manner that improves reversible Zn-ion plating/stripping efficiency. This study provides ideas for the preparation of ZHSC cathode materials.

2.
Langmuir ; 40(1): 788-796, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38196171

RESUMO

Ammonia electrolysis is a promising technology to obtain green hydrogen with zero-carbon emission, in which ammonia oxidation reaction (AOR) and hydrogen evolution reaction (HER) occur at the anode and cathode, respectively. However, the lack of efficient catalysts hinders its practical application. Herein, PtZn alloy is combined with Nb2O5 to construct a bifunctional heterostructure catalyst (PtZn-Nb2O5/C). The optimal sample with Nb2O5 content of 7.05 wt % demonstrates the best performance with a peak current density of 304.1 mA mg-1Pt for AOR, and it is only reduced by 17.0% after 4000 cycles of durability tests. For HER, it has a low overpotential of 34 mV at -10 mA cm-2 under the alkaline condition. This can be ascribed to the interfacial interaction between the PtZn alloy and Nb2O5, which adjusts the adsorption behavior of OHad to concurrently promote AOR and HER activity. This work thus proposes a viable strategy to design an efficient bifunctional catalyst for hydrogen generation from ammonia electrolysis.

3.
Membranes (Basel) ; 13(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37887985

RESUMO

The precise liquidus projection of the V-Ti-Fe system are crucial for designing high-performance hydrogen permeation alloys, but there are still many controversies in the research of this system. To this end, this article first uses the CALPHAD (CALculation of PHAse Diagrams) method to reconstruct the alloy phase diagram and compares and analyses existing experimental data, confirming that the newly constructed phase diagram in this article has good reliability and accuracy. Second, this obtained phase diagram was applied to the subsequent development process of hydrogen permeation alloys, and the (Ti65Fe35)100-xVx (x = 0, 2.5, 5, 10, 15, 25) alloys with dual-phase {bcc-(V, Ti) + TiFe} structure were successfully explored. In particular, the alloys with x values equal to 2.5 at.% and 5 at.% exhibit relatively high hydrogen permeability. Third, to further increase the H2 flux permeation through the alloys, a 500-mm-long tubular (Ti65Fe35)95V5 membrane for hydrogen permeation was prepared for the first time. Hydrogen permeation testing showed that this membrane had a very high H2 flux (4.06 mL min-1), which is ca. 6.7 times greater than the plate-like counterpart (0.61 mL min-1) under the same test conditions. This work not only indicates the reliability of the obtained V-Ti-Fe phase diagram in developing new hydrogen permeation alloys, but also demonstrates that preparing tubular membranes is one of the most important means of improving H2 flux.

4.
Sensors (Basel) ; 23(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896629

RESUMO

Due to the strong oxidizing properties of H2O2, excessive discharge of H2O2 will cause great harm to the environment. Moreover, H2O2 is also an energetic material used as fuel, with specific attention given to its safety. Therefore, it is of great importance to explore and prepare good sensitive materials for the detection of H2O2 with a low detection limit and high selectivity. In this work, a kind of hydrogen peroxide electrochemical sensor has been fabricated. That is, polypyrrole (PPy) has been electropolymerized on the glass carbon electrode (GCE), and then Ag and Cu nanoparticles are modified together on the surface of polypyrrole by electrodeposition. SEM analysis shows that Cu and Ag nanoparticles are uniformly deposited on the surface of PPy. Electrochemical characterization results display that the sensor has a good response to H2O2 with two linear intervals. The first linear range is 0.1-1 mM (R2 = 0.9978, S = 265.06 µA/ (mM × cm2)), and the detection limit is 0.027 µM (S/N = 3). The second linear range is 1-35 mM (R2 = 0.9969, 445.78 µA/ (mM × cm2)), corresponding to 0.063 µM of detection limit (S/N = 3). The sensor reveals good reproducibility (σ = 2.104), repeatability (σ = 2.027), anti-interference, and stability. The recoveries of the electrode are 99.84-103.00% (for 0.1-1 mM of linear range) and 98.65-104.80% (for 1-35 mM linear range). Furthermore, the costs of the hydrogen peroxide electrochemical sensor proposed in this work are reduced largely by using non-precious metals without degradation of the sensing performance of H2O2. This study provides a facile way to develop nanocomposite electrochemical sensors.

5.
Membranes (Basel) ; 13(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37755212

RESUMO

At present, the V-Ti-Co phase diagram is not established, which seriously hinders the subsequent development of this potential hydrogen permeation alloy system. To this end, this article constructed the first phase diagram of the V-Ti-Co system by using the CALculation of PHAse Diagrams (CALPHAD) approach as well as relevant validation experiments. On this basis, hydrogen-permeable VxTi50Co50-x (x = 17.5, 20.5, …, 32.5) alloys were designed, and their microstructure characteristics and hydrogen transport behaviour were further studied by XRD, SEM, EDS, and so on. It was found that six ternary invariant reactions are located in the liquidus projection, and the phase diagram is divided into eight phase regions by their connecting lines. Among them, some alloys in the TiCo phase region were proven to be promising candidate materials for hydrogen permeation. Typically, VxTi50Co50-x (x = 17.5-23.5) alloys, which consist of the primary TiCo and the eutectic {bcc-(V, Ti) and TiCo} structure, show a high hydrogen permeability without hydrogen embrittlement. In particular, V23.5Ti50Co26.5 exhibit the highest permeability of 4.05 × 10-8 mol H2 m-1s-1Pa-0.5, which is the highest value known heretofore in the V-Ti-Co system. The high permeability of these alloys is due in large part to the simultaneous increment of hydrogen solubility and diffusivity, and is closely related to the composition of hydrogen permeable alloys, especially the Ti content in the (V, Ti) phase. The permeability of this alloy system is much higher than those of Nb-TiCo and/or Nb-TiNi alloys.

6.
Nanomaterials (Basel) ; 13(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37368301

RESUMO

As traditional energy structures transition to new sources, hydrogen is receiving significant research attention owing to its potential as a clean energy source. The most significant problem with electrochemical hydrogen evolution is the need for highly efficient catalysts to drive the overpotential required to generate hydrogen gas by electrolyzing water. Experiments have shown that the addition of appropriate materials can reduce the energy required for hydrogen production by electrolysis of water and enable it to play a greater catalytic role in these evolution reactions. Therefore, more complex material compositions are required to obtain these high-performance materials. This study investigates the preparation of hydrogen production catalysts for cathodes. First, rod-like NiMoO4/NiMo is grown on NF (Nickel Foam) using a hydrothermal method. This is used as a core framework, and it provides a higher specific surface area and electron transfer channels. Next, spherical NiS is generated on the NF/NiMo4/NiMo, thus ultimately achieving efficient electrochemical hydrogen evolution. The NF/NiMo4/NiMo@NiS material exhibits a remarkably low overpotential of only 36 mV for the hydrogen evolution reaction (HER) at a current density of 10 mA·cm-2 in a potassium hydroxide solution, indicating its potential use in energy-related applications for HER processes.

7.
Materials (Basel) ; 16(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36837272

RESUMO

In this study, MXene-derived/NiCoFe-LDH heterostructures with three-dimensional interconnected porous network microstructures were prepared, leveraging the excellent electrical conductivity and growth platform provided by the MXene material. The remarkable specific capacitance of metal oxides was fully exploited. The composite exhibited high specific capacitance and excellent stability, with a specific capacitance of 1305 F g-1 at 1 A g-1 and a capacitance of 85.7% of the initial performance after 6000 charge/discharge tests at 10 A g-1. A two-electrode assembly was constructed using activated carbon as the negative electrode material corresponding to 49.5 Wh kg-1 at 800 W kg-1, indicating that the electrodes could achieve rapid charge/discharge. The findings of this study indicate that the composite material comprising LDH/MXene has significant potential for supercapacitor applications.

8.
Nanomaterials (Basel) ; 13(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36770541

RESUMO

Metal organic frameworks (MOFs) are a kind of porous coordination polymer supported by organic ligands with metal ions as connection points. They have a controlled structure and porosity and a significant specific surface area, and can be used as functional linkers or sacrificial templates. However, long diffusion pathways, low conductivity, low cycling stability, and the presence of few exposed active sites limit the direct application of MOFs in energy storage applications. The targeted design of MOFs has the potential to overcome these limitations. This study proposes a facile method to grow and immobilize MOFs on layered double hydroxides through an in situ design. The proposed method imparts not only enhanced conductivity and cycling stability, but also provides additional active sites with excellent specific capacitance properties due to the interconnectivity of MOF nanoparticles and layered double hydroxide (LDH) nanosheets. Due to this favorable heterojunction hook, the NiMo-LDH@NiCo-MOF composite exhibits a large specific capacitance of 1536 F·g-1 at 1 A·g-1. In addition, the assembled NiMo-LDH@NiCo-MOF//AC asymmetric supercapacitor can achieve a high-energy density value of 60.2 Wh·kg-1 at a power density of 797 W·kg-1, indicating promising applications.

9.
RSC Adv ; 12(52): 33598-33604, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36505684

RESUMO

Graphitic carbon nitride (g-C3N4) has attracted enormous attention as a visible-light-responsive carbon-based semiconductor photocatalyst. However, fast charge recombination seriously limits its application. Therefore, it is urgent to modify the electronic structure of g-C3N4 to obtain excellent photocatalytic activity. Herein, we reported a one-step thermal polymerization synthesis of nitrogen-rich g-C3N4 nanosheets. Benefiting from the N self-doping and the ultrathin structure, the optimal CN-70 exhibits its excellent performance. A 6.7 times increased degradation rate of rhodamine B (K = 0.06274 min-1), furthermore, the hydrogen evolution efficiency also reached 2326.24 µmol h-1 g-1 (λ > 420 nm). Based on a series of characterizations and DFT calculations, we demonstrated that the N self-doping g-C3N4 can significantly introduce midgap states between the valence band and conduction band, which is more conducive to the efficient separation of photogenerated carriers. Our work provides a facile and efficient method for self-atom doping into g-C3N4, providing a new pathway for efficient photocatalysts.

10.
RSC Adv ; 12(49): 31985-31995, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36380951

RESUMO

Herein, a highly active Z-scheme SnS/Zn2SnO4 photocatalyst is fabricated by a one-step hydrothermal route. The structure, composition, photoelectric and photocatalytic properties of the as-prepared photocatalysts are systematically researched. The results demonstrate that SZS-6 displays a good photocatalytic performance with an efficiency of 94.5% to degrade methylene blue (MB) under visible light irradiation (λ > 420 nm). And its degradation rate constant is up to 0.0331 min-1, which is 3.9 and 4.4 times faster than SnS and Zn2SnO4, respectively. The formation of a Z-scheme heterojunction facilitates the separation and transfer of charges, which improves the degradation of MB. The Z-scheme charge transfer pathway of the SnS/Zn2SnO4 photocatalyst is verified by the shifted peaks of the X-ray photoelectron spectroscopy (XPS) spectrum, the relative position of the bandgap, work function as well as free radical trapping experiments. The photocatalytic mechanism for the degradation of MB by SnS/Zn2SnO4 is proposed.

11.
Materials (Basel) ; 15(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36431682

RESUMO

In this work, three additives BiOX (BiOI, BiOBr, and BiOF) for Al-H2O reaction have been synthesized using chemical methods. SEM analysis shows that the structure of BiOF is nanoparticles, while BiOBr and BiOI have flower-like structures composed of nanosheets. Then, Al-BiOI, Al-BiOBr, and Al-BiOF composites have been prepared using the ball milling method. The effect of halogen ions on the performance of hydrogen generation from Al hydrolysis has been explored. The results indicate that the conversion yields of Al-BiOBr, Al-BiOI, and Al-BiOF for hydrogen generation are 96.3%, 95.3%, and 8.9%, respectively. In particular, the maximum hydrogen generation rate (MHGR) of Al-BiOI is as high as 3451.8 mL g-1 min-1, eight times higher than that of Al-BiOBr. Furthermore, the influence rule of BiOX (X = F, Cl, Br, and I) on Al-H2O reaction has been studied using density functional theory. The results illustrate that HI can be more easily adsorbed on the Al surface as compared with HF, HCl, and HBr. Meanwhile, the bond length between halogen ions and the Al atom increased in the order of F-, Cl-, Br-, and I-. Therefore, the dissociation of I- from the Al surface becomes easier and will expose more active sites to enhance the reaction activity of Al. In summary, the BiOI has the most favorable performance to Al-H2O reaction.

13.
Nanomaterials (Basel) ; 12(13)2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35808022

RESUMO

Supercapacitors, as a new type of green electrical energy storage device, are a potential solution to environmental problems created by economic development and the excessive use of fossil energy resources. In this work, nitrogen/oxygen (N/O)-doped porous carbon materials for high-performance supercapacitors are fabricated by calcining and activating an organic crosslinked polymer prepared using polyethylene glycol, hydroxypropyl methylcellulose, and 4,4-diphenylmethane diisocyanate. The porous carbon exhibits a large specific surface area (1589 m2·g-1) and high electrochemical performance, thanks to the network structure and rich N/O content in the organic crosslinked polymer. The optimized porous carbon material (COCLP-4.5), obtained by adjusting the raw material ratio of the organic crosslinked polymer, exhibits a high specific capacitance (522 F·g-1 at 0.5 A·g-1), good rate capability (319 F·g-1 at 20 A·g-1), and outstanding stability (83% retention after 5000 cycles) in a three-electrode system. Furthermore, an energy density of 18.04 Wh·kg-1 is obtained at a power density of 200.0 W·kg-1 in a two-electrode system. This study demonstrates that organic crosslinked polymer-derived porous carbon electrode materials have good energy storage potential.

14.
Dalton Trans ; 51(21): 8480-8490, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35603965

RESUMO

The regular structure provided by two-dimensional (2D) structural colloidal crystals is widely accepted to provide an ideal template that ensures that plasmonic bimetallic composite nanostructures are uniform. Herein, we report an effective method for fabricating bimetallic Au-Ag composite films loaded on the surfaces of 2D polystyrene@polyacrylic acid (PS@PAA) colloidal crystals. PS@PAA particles coated with uniform Ag particle layers (AgFON) were produced by a simple and effective sputtering-deposition technique, after which the galvanic replacement (GR) reaction was used to produce a bimetallic (Au-Ag)FON composite film at the liquid/solid interface in aqueous HAuCl4. The morphology and relative contents of the bimetallic (Au-Ag)FON composite film can be regulated by changing the kinetic factors that control the GR reaction, including the concentration and pH of the HAuCl4 solution, and the reaction time. We demonstrated that the fabricated bimetallic (Au-Ag)FON composite has localized surface plasmon resonance (LSPR) properties that can be regulated by varying the composite structure and Ag/Au composition. On the one hand, the regular 2D colloidal crystal structure provides an ideal template for preparing Au-Ag composite films, which ensures that the optical signals of plasmonic Au-Ag composite films are reproducible. On the other hand, the synergy between Ag and Au in the bimetallic alloy composite film ensures stable and tunable LSPR performance. Furthermore, the prepared 2D ordered (Au-Ag)FON Au-Ag bimetallic material is expected to be used in sensing and catalysis applications.

15.
ACS Appl Mater Interfaces ; 13(19): 22664-22675, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33950668

RESUMO

The three-dimensional (3D) architecture of electrode materials with excellent stability and electrochemical activity is extremely desirable for high-performance supercapacitors. In this study, we develop a facile method for fabricating 3D self-supporting Ti3C2 with MoS2 and Cu2O nanocrystal composites for supercapacitor applications. MoS2 was incorporated in Ti3C2 using a hydrothermal method, and Cu2O was embedded in two-dimensional nanosheets by in situ chemical reduction. The resulting composite electrode showed a synergistic effect between the components. Ti3C2 served as a conductive additive to connect MoS2 nanosheets and facilitate charge transfer. MoS2 acted as an active spacer to increase the interlayer space of Ti3C2 and protect Ti3C2 from oxidation. Cu2O effectively prevented the collapse of the lamellar structure of Ti3C2-MoS2. Consequently, the optimized composite exhibited an excellent specific capacitance of 1459 F g-1 at a current density of 1 A g-1. Further, by assembling an all-solid-state flexible supercapacitor with activated carbon, a high energy density of 60.5 W h kg-1 was achieved at a power density of 103 W kg-1. Additionally, the supercapacitor exhibited a capacitance retention of 90% during 3000 charging-discharging cycles. Moreover, high mechanical robustness was retained after bending at different angles, thereby suggesting significant potential applications for future flexible and wearable devices.

16.
ACS Appl Mater Interfaces ; 12(37): 41398-41409, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32820892

RESUMO

Shape-stabilized phase-change composites (SSPCCs) have been widely applied for thermal energy storage and thermal management because of their excellent properties. To further improve their thermal conductivity and thermal cycling stability, we successfully designed and synthesized a series of SSPCCs with three-dimensional (3D) thermally conductive networks by exploiting the synergistic effect between one-dimensional (1D) carbon nanotubes (CNTs) and two-dimensional (2D) hexagonal boron nitride (h-BN). The interconnected thermally conductive network composed of h-BN and multiwalled carbon nanotubes (MWCNTs) enhanced the SSPCC performance. The micromorphologies of the prepared SSPCCs revealed that well-dispersed MWCNTs, hydroxylated h-BN, and polyethylene glycol (PEG) molecular chains effectively bonded into a 3D cross-linking structure of the SSPCCs. Moreover, the chemical and crystalline structural and thermal properties and thermal cycling stability of the novel SSPCCs were systematically investigated by various characterization techniques. The presence of a 3D thermally conductive network in the as-synthesized SSPCCs evidently improved the shape stability, phase-change behavior, and thermal stability. Benefiting from the 3D nanostructural uniqueness of SSPCCs, the thermal conductivity of SSPCC-2 was up to 1.15 W m-1 K-1, which represented a significant enhancement of 239.7% compared with that of pure PEG. Meanwhile, the efficient synergistic effect of h-BN and MWCNTs remarkably enhanced the heat-transfer rate of the SSPCCs. These results demonstrate that the prepared SSPCCs have potential for applications in thermal energy storage and thermal management systems. This study opens a new avenue toward the development of SSPCCs with good comprehensive properties.

17.
RSC Adv ; 10(17): 9996-10005, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35498595

RESUMO

Ammonia borane (AB, NH3BH3) with extremely high hydrogen content (19.6 wt%) is considered to be one of the most promising chemical hydrides for storing hydrogen. According to the starting materials of AB and H2O, a hydrogen capacity of 7.8 wt% is achieved for the AB hydrolytic dehydrogenation system with the presence of a highly efficient catalyst. In this work, ruthenium nanoparticles supported on magnesium-aluminum layered double hydroxides (Ru/MgAl-LDHs) were successfully synthesized via a simple method, i.e., chemical reduction. The effect of Mg/Al molar ratios in MgAl-LDHs on the catalytic performance for AB hydrolytic dehydrogenation was systematically investigated. Catalyzed by the as-synthesized Ru/Mg1Al1-LDHs catalyst, it took about 130 s at room temperature to complete the hydrolysis reaction of AB, which achieved a rate of hydrogen production of about 740 ml s-1 g-1. Furthermore, a relatively high activity (TOF = 137.1 molH2 molRu -1 min-1), low activation energy (E a = 30.8 kJ mol-1) and fairly good recyclability of the Ru/Mg1Al1-LDHs catalyst in ten cycles were achieved toward AB hydrolysis for hydrogen generation. More importantly, the mechanism of AB hydrolysis catalyzed by Ru/MgAl-LDHs was simulated via density functional theory. The facile preparation and high catalytic performance of Ru/MgAl-LDHs make it an efficient catalyst for hydrolytic dehydrogenation of AB.

18.
RSC Adv ; 10(45): 26834-26842, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35515805

RESUMO

CoNiP nanosheet array catalysts were successfully prepared on three-dimensional (3D) graphene foam using hydrothermal synthesis. These catalysts were prepared using 3D Ni-graphene foam (Ni/GF), comprising nickel foam as the 'skeleton' and reduced graphene oxide as the 'skin'. This unique continuous modified 'skeleton/skin' structure ensure that the catalysts had a large surface area, excellent conductivity, and sufficient surface functional groups, which promoted in situ CoNiP growth, while also optimizing the hydrolysis of sodium borohydride. The nanosheet arrays were fully characterized and showed excellent catalytic performance, as supported by density functional theory calculations. The hydrogen generation rate and activation energy are 6681.34 mL min-1 g-1 and 31.2 kJ mol-1, respectively, outperforming most reported cobalt-based catalysts and other precious metal catalysts. Furthermore, the stability of mockstrawberry-like CoNiP catalyst was investigated, with 74.9% of the initial hydrogen generation rate remaining after 15 cycles. The catalytic properties, durability, and stability of the catalyst were better than those of other catalysts reported previously.

19.
Nanoscale ; 11(48): 23268-23274, 2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31782459

RESUMO

Among binary tin chalcogenides as anode materials for lithium-ion batteries, SnSe and SnTe have attracted attention due to their high theoretical volumetric capacity. However, they suffer from sluggish dynamics and serious agglomeration during lithiation/delithiation processes, which leads to inferior cycling performance. This study reports core-shell structure (nano-SnSe/nano-Li4Ti5O12)@C and (nano-SnTe/nano-Li4Ti5O12)@C [denoted as (n-SnX/n-LTO)@C] with extraordinary lithium storage stability. Benefiting from the well-designed structural merits, the core-shell structure of (n-SnX/n-LTO)@C is well preserved over 500 cycles, suggesting its high structural integrity. The (n-SnSe/n-LTO)@C and (n-SnTe/n-LTO)@C anodes deliver high initial volumetric capacities of 3470.1 and 3885.4 mA h cm-3 at 0.2 A g-1 and maintain capacities of 2066.0 and 1975.3 mA h cm-3 even after 500 cycles, respectively. This work provides a new avenue for designing novel binary tin chalcogenide lithium-ion battery anodes with high volumetric capacity and superior long-term cycling performance.

20.
Glob Chall ; 3(1): 1800023, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31565352

RESUMO

Electrochemical capacitors (ECs) are a vital class of electrical energy storage (EES) devices that display the capacity of rapid charging and provide high power density. In the current era, interest in using ionic liquids (ILs) in high-performance EES devices has grown exponentially, as this novel versatile electrolyte media is associated with high thermal stability, excellent ionic conductivity, and the capability to withstand high voltages without undergoing decomposition. ILs are therefore potentially useful materials for improving the energy/power performances of ECs without compromising on safety, cyclic stability, and power density. The current review article underscores the importance of ILs as sustainable and high-performance electrolytes for electrochemical capacitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA