Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 345: 118886, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37673008

RESUMO

Potassium ferrate (K2FeO4) has been extensively employed to promote short-chain fatty acids (SCFAs) production from anaerobic fermentation of waste activated sludge (WAS) because of its potent oxidizing property and formation of alkaline hydrolyzed products (potassium hydroxide, KOH and ferric hydroxide, Fe(OH)3). However, whether K2FeO4 actually works as dual functions of both an oxidizing agent and an alkalinity enhancer during the anaerobic fermentation process remains uncertain. This study aims to identify the contributions of hydrolyzed products of K2FeO4 on SCFAs production. The results showed that K2FeO4 did not execute dual functions of oxidization and alkalinity in promoting SCFAs production. The accumulation of SCFAs using K2FeO4 treatment (183 mg COD/g volatile suspended solids, VSS) was less than that using either KOH (192 mg COD/g VSS) or KOH & Fe(OH)3 (210 mg COD/g VSS). The mechanism analysis indicated that the synergistic effects caused by oxidization and alkalinity properties of K2FeO4 did not happen on solubilization, hydrolysis, and acidogenesis stages, and the inhibition effect caused by K2FeO4 on methanogenesis stage at the initial phase was more severe than that of its hydrolyzed products. It was also noted that the inhibition effects of K2FeO4 and its hydrolyzed products on the methanogenesis stage could be relieved during a longer sludge retention time, and the final methane yields using KOH or KOH & Fe(OH)3 treatment were higher than that using K2FeO4, further confirming that dual functions of K2FeO4 were not obtained. Therefore, K2FeO4 may not be an alternative strategy for enhancing the production of SCFAs from WAS compared to its alkaline hydrolyzed products. Regarding the strong oxidization property of K2FeO4, more attention could be turned to the fates of refractory organics in the anaerobic fermentation of WAS.


Assuntos
Compostos de Potássio , Esgotos , Ácidos Graxos Voláteis
3.
Sci Total Environ ; 852: 158420, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36049687

RESUMO

With the rapid growth of population and urbanization, more and more bio-wastes have been produced. Considering organics contained in bio-wastes, to recover resource from bio-wastes is of great significance, which can not only achieve the resource recycle, but also protect the environment. Anaerobic digestion (AD) has been proved as one of the most promising strategies to recover bio-energy from bio-wastes, as well as to realize the reduction of bio-wastes. However, the conventional interspecies electron transfer is sensitive to environmental shocks, such as high ammonia, organic pollutants, metal ions, etc., which lead to instability or failure of AD. The recent findings have proved that the introduction of zero-valent iron (ZVI) in AD system can significantly enhance methane production from bio-wastes. This review systematically highlighted the recent advances on the roles of ZVI in AD, including underlying mechanisms of ZVI on AD, performance enhancement of AD contributed by ZVI, and impact factors of AD regulated by ZVI. Furthermore, current limitations and outlooks have been analyzed and concluded. The roles of ZVI on underlying mechanisms in AD include regulating reaction conditions, electron transfer mode and function of microbial communities. The addition of ZVI in AD can not only enhance bio-energy recovery and toxic contaminants removal from bio-wastes, but also have the potential to buffer adverse effect caused by inhibitors. Moreover, the electron transfer modes induced by ZVI include both interspecies hydrogen transfer and direct interspecies electron transfer pathways. How to comprehensively evaluate the effects of ZVI on AD and further improve the roles of ZVI in AD is urgently needed for practical application of ZVI in AD. This review aims to provide some references for the introduction of ZVI in AD for enhancing bio-energy recovery from bio-wastes.


Assuntos
Poluentes Ambientais , Ferro , Anaerobiose , Amônia , Metano , Hidrogênio
4.
Bioresour Technol ; 363: 127895, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36067895

RESUMO

Alkaline pretreatment is one promising strategy for promoting anaerobic digestion of waste activated sludge (WAS). This study selected three types of alkalis with monovalent (NaOH and KOH), divalent (Ca(OH)2 and Mg(OH)2), and trivalent (Fe(OH)3 and Al(OH)3) cations to reveal the roles of metal ions on short chain fatty acids (SCFAs) production. The enhanced production potentials of SCFAs were reduced by order of alkalis with monovalent, divalent, and trivalent cations. Na+, K+, Ca2+, and Mg2+ did no contributions on SCFAs production, while Fe3+ and Al3+ performed better than control, especially the latter. The mechanism analysis proved that Na+, K+, Ca2+, and Mg2+ did no significant effects on solubilization, hydrolysis, acidification and methanogenesis stages, while the first three stages were improved by Fe3+ and Al3+ and the methanogenesis stage was inhibited. The findings may provide some new insights when using alkalis or residual metal ions to improve anaerobic digestion of WAS.


Assuntos
Álcalis , Esgotos , Anaerobiose , Cátions , Ácidos Graxos Voláteis , Metais , Hidróxido de Sódio
5.
Sci Total Environ ; 818: 151694, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34798085

RESUMO

Waste activated sludge (WAS), as the byproducts of wastewater treatment plants, has been greatly produced. With high cost and environmental risk of WAS disposal, to explore a low-cost and environment-friendly technology has been a great challenge. Considering that WAS is a collection of organic matters, anaerobic fermentation has been selected as a sustainable way to simultaneously recover resources and reduce environmental pollution. To recover short-chain fatty acids (SCFAs) has gained great concern because of the high value-added application and high-efficiency production process. Considering the temperature in some areas of the world can reach to below 0 °C, this study proposed an efficient strategy, i.e., stepwise freezing and thawing treatment, to promote SCFAs production. The maximal production of SCFAs, i.e., 246 mg COD/g volatile suspended solid, was obtained with the shortened retention time of five days. Mechanistic studies showed that the solubilization of both extracellular polymeric substances (EPSs) and microbial cells could be accelerated, with the EPSs removal of 58.3% for proteins and 59.0% for polysaccharides. Also, the hydrolysis process was promoted to provide more substrates for subsequent acidogenisis, and the functional microorganisms, such as Romboutsia, Paraclostridium, Macellibacteroides and Conexibacter, were greatly enriched, with a total abundance of 26.2%. Moreover, compared to control, methanogenesis was inhibited at a shortened sludge retention time (e.g., five days), which benefited to the accumulation of SCFAs, but the methane production was increased by 25.2% at a longer sludge retention time (e.g., ten days). Thus, these findings of this work may provide some new solutions for the enhanced resource recovery from WAS, and further for carbon-neutral operation of wastewater treatment plants.


Assuntos
Ácidos Graxos Voláteis , Esgotos , Anaerobiose , Matriz Extracelular de Substâncias Poliméricas , Fermentação , Congelamento , Concentração de Íons de Hidrogênio , Hidrólise , Esgotos/química
6.
Bioresour Technol ; 347: 126337, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34780904

RESUMO

This study proposed a novel and high-efficiency strategy, i.e., freezing followed by low-temperature thermal treatment, to significantly promote short-chain fatty acids (SCFAs) production from waste activated sludge compared to traditional freezing/thawing treatment. The maximal production of SCFAs was 212 mg COD/g VSS with a shortened retention time of five days, and the potentially recovered carbon source, including SCFAs, soluble polysaccharides and proteins, reached 321 mg COD/g VSS, increased by 92.1 and 28.3% compared to sole freezing and thermal treatment. Both the solubilization and hydrolysis steps of WAS were accelerated, and the acid-producing microorganisms, such as Macellibacteroides, Romboutsia and Paraclostridium, were greatly enriched, with a total abundance of 13.9%, which was only 0.54% in control. Interestingly, the methane production was inhibited at a shortened retention time, resulting in SCFAs accumulation, whereas it was increased by 32.0% at a longer sludge retention time, providing a potential solution for energy recovery from WAS.


Assuntos
Ácidos Graxos Voláteis , Esgotos , Anaerobiose , Fermentação , Congelamento , Concentração de Íons de Hidrogênio , Temperatura
7.
Materials (Basel) ; 12(23)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795285

RESUMO

In this study, magnetic visible light driven photocatalysts (bismuth ferrite, Bi2Fe4O9, BFO and Co-doped bismuth ferrite, Co-BFO) were successfully prepared by the facile hydrothermal method. The catalyst was used in the application of heterogeneous persulfate (PS) system under visible LED light irradiation for the degradation of levofloxacin (LFX), proving to be an excellent photocatalyst when evaluated by various characterization methods. The effect of Co-doping in the BFO structure was investigated that the decrease of band gap width and the generated photoelectrons and holes would effectively reduce the recombination of photogenerated electron-hole pairs, leading to the enhancement photocatalytic activity. The results demonstrated that Co-BFO catalyst had a high photodegradation efficiency over a wide pH range of 3.0-9.0 and the Co-BFO-2 composite displayed the optimal catalytic performance. It was found that the degradation rate of LFX by Co-BFO-2 catalyst was 3.52 times higher than that of pure BFO catalyst under visible light condition. The free radical trapping experiments and EPR tests demonstrated that superoxide, photogenerated holes and sulfate radicals were the main active species in the photocatalytic degradation of LFX. And a possible photocatalytic degradation mechanism of LFX was proposed in the Vis/Co-BFO/PS process. These findings provided new insight of the mechanism of heterogeneous activation of persulfate by Co-BFO under visible light irradiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA