Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Front Neurosci ; 17: 1251017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901428

RESUMO

Epilepsy is one of the most common neurologic disorders that is characterized by recurrent seizures, and depending on the type of seizure, it could lead to a severe outcome. Epilepsy's mechanism of development is not fully understood yet, but some of the common features of the disease are blood-brain barrier disruption, microglia activation, and neuroinflammation. Those are also targets of activated protein C (APC). In fact, by downregulating thrombin, known as a pro-inflammatory, APC acts as an anti-inflammatory. APC is also an anti-apoptotic protein, instance by blocking p53-mediated apoptosis. APC's neuroprotective effect could prevent blood-brain barrier dysfunction by acting on endothelial cells. Furthermore, through the downregulation of proapoptotic, and proinflammatory genes, APC's neuroprotection could reduce the effect or prevent epilepsy pathogenesis. APC's activity acts on blood-brain barrier disruption, inflammation, and apoptosis and causes neurogenesis, all hallmarks that could potentially treat or prevent epilepsy. Here we review both Activated Protein C and epilepsy mechanism, function, and the possible association between them.

2.
Biochem Biophys Rep ; 35: 101550, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37823005

RESUMO

Epilepsy is one of the most common and oldest neurological disorders, characterized by periodic seizures that affect millions globally. Despite its long history, its pathophysiology is not fully understood. Additionally, the current treatment methods have their limitations. Finding a new alternative is necessary. Activated Protein C (APC) has been proven to have neurological protection in other neurological disorders; however, there is no study that focuses on the role of APC in seizures. We propose that APC's protective effect could be associated with seizures through inflammation and apoptosis regulation. The results demonstrated that APC's pathway proteins are involved in neuroprotection mechanisms in seizure-induced models by acting on certain inflammatory factors, such as NF-κB and apoptosis proteins.

3.
Biochem Biophys Res Commun ; 659: 46-53, 2023 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-37031594

RESUMO

Ischemic heart disease (IHD) is the leading cause of death on a global scale. Despite significant advances in the reperfusion treatment of acute myocardial infarction, there is still a significant early mortality rate among the elderly, as angioplasty-achieved reperfusion can exacerbate myocardial damage, leading to severe ischemia/reperfusion (I/R) injury and induce fatal arrhythmias. Mitochondria are a key mediator of ischemic insults; a transient blockade of the electron transport chain (ETC) at complex I during reperfusion can reduce myocardial infarct caused by ischemic insults. The reversible, transient modulation of complex I during early reperfusion is limited by the available of clinically tractable agents. We employed the novel use of acute, high dose metformin to modulate complex I activity during early reperfusion to decrease cardiac injury in the high-risk aged heart. Young (3-6 months) and aged (22-24 months) male and female C57BL/6 J mice were subjected to in vivo regional ischemia for 45 min, followed by metformin (2 mM, i. v.) injection 5 min prior to reperfusion for 24 h. The cardiac functions were measured with echocardiography. A Seahorse XF24 Analyzer was used to ascertain mitochondrial function. Cardiomyocyte sarcomere shortening and calcium transients were measured using the IonOptix Calcium and Contractility System. The results demonstrated that administration of acute, high dose metformin at the onset of reperfusion significantly limited cardiac damage and rescued cardiac dysfunction caused by I/R in both young and aged mice. Importantly, metformin treatment improves contractile functions of isolated cardiomyocytes and maintains mitochondrial integrity under I/R stress conditions. Thus, acute metformin administration at the onset of reperfusion has potential as a mitochondrial-based therapeutic to mitigate reperfusion injury and reduce infarct size in the elderly heart attack patient who remains at greater mortality risk despite reperfusion alone.


Assuntos
Metformina , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Masculino , Feminino , Camundongos , Animais , Metformina/farmacologia , Metformina/uso terapêutico , Traumatismo por Reperfusão Miocárdica/metabolismo , Cálcio/metabolismo , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Infarto do Miocárdio/metabolismo , Mitocôndrias/metabolismo , Isquemia/metabolismo , Metabolismo Energético , Mitocôndrias Cardíacas/metabolismo
4.
Cells ; 12(6)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36980186

RESUMO

Acute kidney injury (AKI) leads to acute cardiac injury and dysfunction in cardiorenal syndrome Type 3 (CRS3) through oxidative stress (OS). The stress-inducible Sestrin2 (Sesn2) protein reduces reactive oxygen species (ROS) accumulation and activates AMP-dependent protein kinase (AMPK) to regulate cellular metabolism and energetics during OS. Sesn2 levels and its protective effects decline in the aged heart. Antidiabetic drug metformin upregulates Sesn2 levels in response to ischemia-reperfusion (IR) stress. However, the role of metformin in CRS3 remains unknown. This study seeks to explore how the age-related decrease in cardiac Sesn2 levels contributes to cardiac intolerance to AKI-induced insults, and how metformin ameliorates CRS3 through Sesn2. Young (3-5 months) and aged (21-23 months) C57BL/6J wild-type mice along with cardiomyocyte-specific knockout (cSesn2-/-) and their wild type of littermate (Sesn2f/f) C57BL/6J mice were subjected to AKI for 15 min followed by 24 h of reperfusion. Cardiac and mitochondrial functions were evaluated through echocardiograms and seahorse mitochondria respirational analysis. Renal and cardiac tissue was collected for histological analysis and immunoblotting. The results indicate that metformin could significantly rescue AKI-induced cardiac dysfunction and injury via Sesn2 through an improvement in systolic and diastolic function, fibrotic and cellular damage, and mitochondrial function in young, Sesn2f/f, and especially aged mice. Metformin significantly increased Sesn2 expression under AKI stress in the aged left-ventricular tissue. Thus, this study suggests that Sesn2 mediates the cardioprotective effects of metformin during post-AKI.


Assuntos
Injúria Renal Aguda , Síndrome Cardiorrenal , Metformina , Camundongos , Animais , Metformina/farmacologia , Metformina/uso terapêutico , Síndrome Cardiorrenal/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos Endogâmicos C57BL , Injúria Renal Aguda/tratamento farmacológico
5.
Aging Cell ; 22(4): e13800, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36797808

RESUMO

Ischemic heart disease (IHD) is the leading cause of death, with age range being the primary factor for development. The mechanisms by which aging increases vulnerability to ischemic insult are not well understood. We aim to use single-cell RNA sequencing to discover transcriptional differences in various cell types between aged and young mice, which may contribute to aged-related vulnerability to ischemic insult. Utilizing 10× Genomics Single-Cell RNA sequencing, we were able to complete bioinformatic analysis to identity novel differential gene expression. During the analysis of our collected samples, we detected Pyruvate Dehydrogenase Kinase 4 (Pdk4) expression to be remarkably differentially expressed. Particularly in cardiomyocyte cell populations, Pdk4 was found to be significantly upregulated in the young mouse population compared to the aged mice under ischemic/reperfusion conditions. Pdk4 is responsible for inhibiting the enzyme pyruvate dehydrogenase, resulting in the regulation of glucose metabolism. Due to decreased Pdk4 expression in aged cardiomyocytes, there may be an increased reliance on glucose oxidization for energy. Through biochemical metabolomics analysis, it was observed that there is a greater abundance of pyruvate in young hearts in contrast to their aged counterparts, indicating less glycolytic activity. We believe that Pdk4 response provides valuable insight towards mechanisms that allow for the young heart to handle ischemic insult stress more effectively than the aged heart.


Assuntos
Miócitos Cardíacos , Proteínas Quinases , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Proteínas Quinases/metabolismo , Piruvatos , Envelhecimento/genética
6.
Biochem Biophys Res Commun ; 637: 170-180, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36403480

RESUMO

Sirtuin1 (SIRT1) is involved in regulating substrate metabolism in the cardiovascular system. Metabolic homeostasis plays a critical role in hypertrophic heart failure. We hypothesize that cardiac SIRT1 can modulate substrate metabolism during pressure overload-induced heart failure. The inducible cardiomyocyte Sirt1 knockout (icSirt1-/-) and its wild type littermates (Sirt1f/f) C57BL/6J mice were subjected to transverse aortic constriction (TAC) surgery to induce pressure overload. The pressure overload induces upregulation of cardiac SIRT1 in Sirt1f/f but not icSirt1-/- mice. The cardiac contractile dysfunctions caused by TAC-induced pressure overload occurred in Sirt1f/f but not in icSirt1-/- mice. Intriguingly, Sirt1f/f heart showed a drastic reduction in systolic contractility and electric signals during post-TAC surgery, whereas icSirt1-/- heart demonstrated significant resistance to pathological stress by TAC-induced pressure overload as evidenced by no significant changes in systolic contractile functions and electric properties. The targeted proteomics showed that the pressure overload triggered downregulation of the SIRT1-associated IDH2 (isocitrate dehydrogenase 2) that resulted in increased oxidative stress in mitochondria. Moreover, metabolic alterations were observed in Sirt1f/f but not in icSirt1-/- heart in response to TAC-induced pressure overload. Thus, SIRT1 interferes with metabolic homeostasis through mitochondrial IDH2 during pressure overload. Inhibition of SIRT1 activity benefits cardiac functions under pressure overload-related pathological conditions.


Assuntos
Estenose da Valva Aórtica , Insuficiência Cardíaca , Sirtuína 1 , Animais , Camundongos , Constrição Patológica , Metabolismo Energético , Insuficiência Cardíaca/etiologia , Hipertrofia , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Sirtuína 1/metabolismo
7.
Cells ; 11(16)2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36010689

RESUMO

Obesity is of concern to the population because it is known to cause inflammation and oxidative stress throughout the body, leading to patient predisposition for health conditions such as diabetes, hypertension, and some cancers. However, some proteins that are activated in times of oxidative stress may provide cytoprotective properties. In this study, we aim to gain further understanding of the interconnection between Nrf2 and Sesn2 during obesity-related stress and how this relationship can play a role in cardio-protection. Cardiomyocyte-specific Sesn2 knockout (cSesn2-/-) and Sesn2 overexpressed (tTa-tet-Sesn2) mice and their wildtype littermates (Sesn2flox/flox and tet-Sesn2, respectively) were assigned to either a normal chow (NC) or a high-fat (HF) diet to induce obesity. After 16 weeks of dietary intervention, heart function was evaluated via echocardiography and cardiac tissue was collected for analysis. Immunoblotting, histology, and ROS staining were completed. Human heart samples were obtained via the LifeLink Foundation and were also subjected to analysis. Overall, these results indicated that the overexpression of Sesn2 appears to have cardio-protective effects on the obese heart through the reduction of ROS and fibrosis present in the tissues and in cardiac function. These results were consistent for both mouse and human heart samples. In human samples, there was an increase in Sesn2 and Nrf2 expression in the obese patients' LV tissue. However, there was no observable pattern of Sesn2/Nrf2 expression in mouse LV tissue samples. Further investigation into the link between the Sesn2/Nrf2 pathway and obesity-related oxidative stress is needed.


Assuntos
Cardiopatias , Fator 2 Relacionado a NF-E2 , Animais , Humanos , Camundongos , Dieta Hiperlipídica , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Nucleares/metabolismo , Obesidade , Espécies Reativas de Oxigênio/metabolismo , Sestrinas
8.
Cells ; 11(13)2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35805130

RESUMO

Neurogenesis occurs in the brain during embryonic development and throughout adulthood. Neurogenesis occurs in the hippocampus and under normal conditions and persists in two regions of the brain-the subgranular zone (SGZ) in the dentate gyrus of the hippocampus and the subventricular zone (SVZ) of the lateral ventricles. As the critical role in neurogenesis, the neural stem cells have the capacity to differentiate into various cells and to self-renew. This process is controlled through different methods. The mammalian target of rapamycin (mTOR) controls cellular growth, cell proliferation, apoptosis, and autophagy. The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is a major regulator of metabolism, protein quality control, and antioxidative defense, and is linked to neurogenesis. However, dysregulation in neurogenesis, mTOR, and Nrf2 activity have all been associated with neurodegenerative diseases such as Alzheimer's, Huntington's, and Parkinson's. Understanding the role of these complexes in both neurogenesis and neurodegenerative disease could be necessary to develop future therapies. Here, we review both mTOR and Nrf2 complexes, their crosstalk and role in neurogenesis, and their implication in neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Animais , Mamíferos , Fator 2 Relacionado a NF-E2 , Neurogênese/fisiologia , Sirolimo , Serina-Treonina Quinases TOR
9.
Front Cardiovasc Med ; 9: 850538, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35274014

RESUMO

A progressive defect in the energy generation pathway is implicated in multiple aging-related diseases, including cardiovascular conditions and Alzheimer's Disease (AD). However, evidence of the pathogenesis of cardiac dysfunction in AD and the associations between the two organ diseases need further elucidation. This study aims to characterize cellular defects resulting in decreased cardiac function in AD-model. 5XFAD mice, a strain expressing five mutations in human APP and PS1 that shows robust Aß production with visible plaques at 2 months and were used in this study as a model of AD. 5XFAD mice and wild-type (WT) counterparts were subjected to echocardiography at 2-, 4-, and 6-month, and 5XFAD had a significant reduction in cardiac fractional shortening and ejection fraction compared to WT. Additionally, 5XFAD mice had decreased observed electrical signals demonstrated as decreased R, P, T wave amplitudes. In isolated cardiomyocytes, 5XFAD mice showed decreased fraction shortening, rate of shortening, as well as the degree of transient calcium influx. To reveal the mechanism by which AD leads to cardiac systolic dysfunction, the immunoblotting analysis showed increased activation of AMP-activated protein kinase (AMPK) in 5XFAD left ventricular and brain tissue, indicating altered energy metabolism. Mito Stress Assays examining mitochondrial function revealed decreased basal and maximal oxygen consumption rate, as well as defective pyruvate dehydrogenase activity in the 5XFAD heart and brain. Cellular inflammation was provoked in the 5XFAD heart and brain marked by the increase of reactive oxygen species accumulation and upregulation of inflammatory mediator activities. Finally, AD pathological phenotype with increased deposition of Aß and defective cognitive function was observed in 6-month 5XFAD mice. In addition, elevated fibrosis was observed in the 6-month 5XFAD heart. The results implicated that AD led to defective mitochondrial function, and increased inflammation which caused the decrease in contractility of the heart.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA