RESUMO
Proper mixing of reagents is of paramount importance for an efficient chemical reaction. While on a large scale there are many good solutions for quantitative mixing of reagents, as of today, efficient and inexpensive fluid mixing in the nanoliter and microliter volume range is still a challenge. Complete, i.e., quantitative mixing is of special importance in any small-scale analytical application because the scarcity of analytes and the low volume of the reagents demand efficient utilization of all available reaction components. In this paper we demonstrate the design and fabrication of a novel centrifugal force-based unit for fast mixing of fluids in the nanoliter to microliter volume range. The device consists of a number of chambers (including two loading chambers, one pressure chamber, and one mixing chamber) that are connected through a network of microchannels, and is made by bonding a slab of polydimethylsiloxane (PDMS) to a glass slide. The PDMS slab was cast using a SU-8 master mold fabricated by a two-level photolithography process. This microfluidic mixer exploits centrifugal force and pneumatic pressure to reciprocate the flow of fluid samples in order to minimize the amount of sample and the time of mixing. The process of mixing was monitored by utilizing the planar laser induced fluorescence (PLIF) technique. A time series of high resolution images of the mixing chamber were analyzed for the spatial distribution of light intensities as the two fluids (suspension of red fluorescent particles and water) mixed. Histograms of the fluorescent emissions within the mixing chamber during different stages of the mixing process were created to quantify the level of mixing of the mixing fluids. The results suggest that quantitative mixing was achieved in less than 3 min. This device can be employed as a stand alone mixing unit or may be integrated into a disk-based microfluidic system where, in addition to mixing, several other sample preparation steps may be included.
Assuntos
Centrifugação/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Dimetilpolisiloxanos , Desenho de Equipamento , Fluorescência , Lasers , Luz , Microesferas , Fatores de Tempo , Água/químicaRESUMO
An array of four sensing microdome optodes (potassium, sodium, calcium, and chloride) was incorporated into a centrifugal microfluidics platform to obtain a multiion analysis system. The behavior of each sensing microdome was in good agreement with a theoretical model describing the response. The selectivity of each optode over common interfering ions was established and was used to identify calibrant solutions that can be employed for the simultaneous calibration of all four optodes without significant cross-interference. The microfluidic platform was designed to facilitate both three-point calibration of the optodes and triplicate analysis of a sample within a single run, which increases the accuracy of the determination. The optimized microfluidic system was used to determine simultaneously the concentration of potassium, sodium, calcium, and chloride in aquarium water (with the composition of Lake Tanganyika water) with less than 6% error. The simple process of fabrication of these microdomes and their incorporation into a centrifugal microfluidic platform should facilitate the development of portable ion-sensing analysis systems.
RESUMO
The gravity response is an array of behavioral and physiological plasticity elicited by changes in ambient mechanical force and is an evolutionarily ancient adaptive mechanism. We show in Caenorhabditis elegans that the force of hypergravity is translated into biological signaling via a genetic pathway involving three factors: the degenerin/epithelial Na(+) channel (DEG/ENaC) class of mechanosensory channels of touch receptor neurons, the neurotransmitter serotonin, and the FoxO transcription factor DAF-16 known to regulate development, energy metabolism, stress responses, and aging. After worms were exposed to hypergravity for 3 hr, their muscular and neuronal functions were preserved, but they exhibited DAF-16::GFP nuclear accumulation in cells throughout the body and accumulated excess fat. Mutations in MEC-4/MEC-10 DEG/ENaC or its partners MEC-6, MEC-7, and MEC-9 blocked DAF-16::GFP nuclear accumulation induced by hypergravity but did not affect DAF-16 response to other stresses. We show that exogenous serotonin and the antidepressant fluoxetine can attenuate DAF-16::GFP nuclear accumulation in WT animals exposed to hypergravity. These results reveal a novel physiological role of the mechanosensory channel, showing that the perception of mechanical stress controls FoxO signaling pathways and that inactivation of DEG/ENaC may decouple mechanical loading and physiological responses.
Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Canais Epiteliais de Sódio/fisiologia , Gravitação , Proteínas de Membrana/fisiologia , Canais de Sódio/fisiologia , Fatores de Transcrição/fisiologia , Animais , Caenorhabditis elegans/fisiologia , Fatores de Transcrição Forkhead , Mecanorreceptores/fisiologia , Estresse MecânicoRESUMO
In this paper, we present the design and characterization of a novel platform for mechanical cell lysis of even the most difficult to lyse cell types on a micro or nanoscale (maximum 70 microL total volume). The system incorporates a machined plastic circular disk assembly, magnetic field actuated microfluidics, centrifugal cells and tissue homogenizer and centrifugation system. The mechanism of tissue disruption of this novel cell homogenization apparatus derives from the relative motion of ferromagnetic metal disks and grinding matrices in a liquid medium within individual chambers of the disk in the presence of an oscillating magnetic field. The oscillation of the ferromagnetic disks or blades produces mechanical impaction and shear forces capable of disrupting cells within the chamber both by direct action of the blade and by the motion of the surrounding lysis matrix, and by motion induced vortexing of buffer fluid. Glass beads or other grinding media are integrated into each lysis chamber within the disk to enhance the transfer of energy from the oscillating metal blade to the cells. The system also achieves the centrifugal elimination of solids from each liquid sample and allows the elution of clarified supernatants via siphoning into a collection chamber fabricated into the plastic disk assembly. This article describes system design, implementation and validation of proof of concept on two samples--Escherichia coli and Saccharomyces cerevisiae representing model systems for cells that are easy and difficult to lyse, respectively.
Assuntos
Fenômenos Fisiológicos Celulares , Microfluídica/instrumentação , DNA Bacteriano/isolamento & purificação , DNA Fúngico/isolamento & purificação , Eletroforese em Gel de Ágar , Escherichia coli/citologia , Magnetismo , Microfluídica/métodos , Saccharomyces cerevisiae/citologiaRESUMO
A low-cost, disposable card for rapid polymerase chain reaction (PCR) was developed in this work. Commercially available, adhesive-coated aluminum foils and polypropylene films were laminated with structured polycarbonate films to form microreactors in a card format. Ice valves [1] were employed to seal the reaction chambers during thermal cycling and a Peltier-based thermal cycler was configured for rapid thermal cycling and ice valve actuation. Numerical modeling was conducted to optimize the design of the PCR reactor and investigate the thermal gradient in the reaction chamber in the direction of sample thickness. The PCR reactor was experimentally characterized by using thin foil thermocouples and validated by a successful amplification of 10 copy of E. coli tuf gene in 27 min.
Assuntos
Equipamentos Descartáveis/economia , Reação em Cadeia da Polimerase/instrumentação , Desenho de Equipamento , Escherichia coli/genética , Miniaturização , Modelos Teóricos , Reação em Cadeia da Polimerase/economia , Reação em Cadeia da Polimerase/métodos , TemperaturaRESUMO
In this paper, centrifuge-based microfluidic platforms are reviewed and compared with other popular microfluidic propulsion methods. The underlying physical principles of centrifugal pumping in microfluidic systems are presented and the various centrifuge fluidic functions, such as valving, decanting, calibration, mixing, metering, heating, sample splitting, and separation, are introduced. Those fluidic functions have been combined with analytical measurement techniques, such as optical imaging, absorbance, and fluorescence spectroscopy and mass spectrometry, to make the centrifugal platform a powerful solution for medical and clinical diagnostics and high throughput screening (HTS) in drug discovery. Applications of a compact disc (CD)-based centrifuge platform analyzed in this review include two-point calibration of an optode-based ion sensor, an automated immunoassay platform, multiple parallel screening assays, and cellular-based assays. The use of modified commercial CD drives for high-resolution optical imaging is discussed as well. From a broader perspective, we compare technical barriers involved in applying microfluidics for sensing and diagnostic use and applying such techniques to HTS. The latter poses less challenges and explains why HTS products based on a CD fluidic platform are already commercially available, whereas we might have to wait longer to see commercial CD-based diagnostics.
Assuntos
Bioensaio/instrumentação , Técnicas de Cultura de Células/instrumentação , Separação Celular/instrumentação , Discos Compactos , Técnicas Analíticas Microfluídicas/instrumentação , Ultracentrifugação/instrumentação , Ultracentrifugação/métodos , Bioensaio/métodos , Técnicas de Cultura de Células/métodos , Fracionamento Celular/instrumentação , Fracionamento Celular/métodos , Separação Celular/métodos , Técnicas de Química Analítica/instrumentação , Técnicas de Química Analítica/métodos , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/métodosRESUMO
This work demonstrates the development of microfluidic compact discs (CDs) for protein purification and fractionation integrating a series of microfluidic features, such as microreservoirs, microchannels, and microfluidic fractionators. The CDs were fabricated with polydimethylsiloxane (PDMS), and each device contained multiple identical microfluidic patterns. Each pattern employed a microfluidic fractionation feature with operation that was based on the redirection of fluid into an isolation chamber as a result of an overflow. This feature offers the advantage of automated operation without the need for any external manipulation, which is independent of the size and the charge of the fractionated molecules. The performance of the microfluidic fractionator was evaluated by its integration into a protein purification microfluidic architecture. The microfluidic architecture employed a microchamber that accommodated a monolithic microcolumn, the fractionator, and an isolation chamber, which was also utilized for the optical detection of the purified protein. The monolithic microcolumn was polymerized "in situ" on the CD from a monolith precursor solution by microwave-initiated polymerization. This technique enabled the fast, efficient, and simultaneous polymerization of monoliths on disposable CD microfluidic platforms. The design of the CD employed allows the integration of various processes on a single microfluidic device, including protein purification, fractionation, isolation, and detection.
Assuntos
Técnicas Analíticas Microfluídicas/métodos , Microscopia Eletrônica de Varredura , Micro-Ondas , Estrutura Molecular , Polímeros/química , Proteínas/análise , Proteínas/isolamento & purificação , Espectrometria de Fluorescência , TemperaturaRESUMO
A novel controlled drug delivery system in which drug release is achieved by electrochemically actuating an array of polymeric valves on a set of drug reservoirs has been developed. The valves are bilayer structures, made in shape of a flap hinged on one side to a valve seat, consisting of thin films of evaporated gold and electrochemically deposited polypyrrole (PPy). Drugs (dry or wet) were pre-stored in an array of these reservoirs and their release is accomplished by bending the bilayer flaps away from the substrate with a small applied bias. In vitro color dye release experiment has been conducted. Seventy-five percent less energy consumption was achieved with this bilayer polymer valve design to open a same size reservoir compared to metal-corrosion based valves. Complex release patterns such as multiple drug pulsatile release and continuous linear release have been successfully implemented through flexible control of valve actuation sequence. These valves can be actuated under closed-loop-control of sensors responding to a specific biological or environmental stimulus, leading to potential applications in advanced responsive drug delivery systems.
Assuntos
Sistemas de Liberação de Medicamentos/instrumentação , Polímeros , Pirróis , Sistemas de Liberação de Medicamentos/métodos , Eletroquímica/instrumentação , OuroRESUMO
In this investigation we report on the influence of volumetric flow rate, flow velocity, complementary DNA concentration, height of a microfluidic flow channel and time on DNA hybridization kinetics. A syringe pump was used to drive Cy3-labeled target DNA through a polydimethylsiloxane (PDMS) microfluidic flow channel to hybridize with immobilized DNA from the West Nile Virus. We demonstrate that a reduction of channel height, while keeping a fixed volumetric flow rate or a fixed flow velocity, enhances mass transport of target DNA to the capture probes. Compared to a passive hybridization, the DNA hybridization in the microfluidic flow channel generates higher fluorescence intensities for lower concentration of target DNA during the same fixed period of time. Within a fixed 2 min time period the fastest DNA hybridization at a 50 pM concentration of target DNA is achieved with a continuous flow of target DNA at the highest flow rate and the lowest channel height.
RESUMO
BACKGROUND: Current hybridization protocols on microarrays are slow and need skilled personnel. Microfluidics is an emerging science that enables the processing of minute volumes of liquids to perform chemical, biochemical, or enzymatic analyzes. The merging of microfluidics and microarray technologies constitutes an elegant solution that will automate and speed up microarray hybridization. METHODS: We developed a microfluidic flow cell consisting of a network of chambers and channels molded into a polydimethylsiloxane substrate. The substrate was aligned and reversibly bound to the microarray printed on a standard glass slide to form a functional microfluidic unit. The microfluidic units were placed on an engraved, disc-shaped support fixed on a rotational device. Centrifugal forces drove the sample and buffers directly onto the microarray surface. RESULTS: This microfluidic system increased the hybridization signal by approximately 10fold compared with a passive system that made use of 10 times more sample. By means of a 15-min automated hybridization process, performed at room temperature, we demonstrated the discrimination of 4 clinically relevant Staphylococcus species that differ by as little as a single-nucleotide polymorphism. This process included hybridization, washing, rinsing, and drying steps and did not require any purification of target nucleic acids. This platform was sensitive enough to detect 10 PCR-amplified bacterial genomes. CONCLUSION: This removable microfluidic system for performing microarray hybridization on glass slides is promising for molecular diagnostics and gene profiling.
Assuntos
DNA/química , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Microfluídica/instrumentação , Microfluídica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Dimetilpolisiloxanos/química , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Sensibilidade e Especificidade , Especificidade da Espécie , Staphylococcus/classificação , Staphylococcus/genética , Propriedades de SuperfícieRESUMO
Cell lysis was demonstrated on a microfluidic CD (Compact Disc) platform. In this purely mechanical lysis method, spherical particles (beads) in a lysis chamber microfabricated in a CD, cause disruption of mammalian (CHO-K1), bacterial (Escherichia coli), and yeast (Saccharomyces cerevisiae) cells. Interactions between beads and cells are generated in the rimming flow established inside a partially filled annular chamber in the CD rotating around a horizontal axis. To maximize bead-cell interactions in the lysis chamber, the CD was spun forward and backwards around this axis, using high acceleration for 5 to 7 min. Investigation on inter-particle forces (friction and collision) identified the following parameters; bead density, angular velocity, acceleration rate, and solid volume fraction as having the most significant contribution to cell lysis. Cell disruption efficiency was verified either through direct microscopic viewing or measurement of the DNA concentration after cell lysing. Lysis efficiency relative to a conventional lysis protocol was approximately 65%. In the long term, this work is geared towards CD based sample-to-answer nucleic acid analysis which will include cell lysis, DNA purification, DNA amplification, and DNA hybridization detection.