Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cell Rep ; 39(9): 110881, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35649376

RESUMO

Endothelial and erythropoietic lineages arise from a common developmental progenitor. Etv2 is a master transcriptional regulator required for the development of both lineages. However, the mechanisms through which Etv2 initiates the gene-regulatory networks (GRNs) for endothelial and erythropoietic specification and how the two GRNs diverge downstream of Etv2 remain incompletely understood. Here, by analyzing a hypomorphic Etv2 mutant, we demonstrate different threshold requirements for initiation of the downstream GRNs for endothelial and erythropoietic development. We show that Etv2 functions directly in a coherent feedforward transcriptional network for vascular endothelial development, and a low level of Etv2 expression is sufficient to induce and sustain the endothelial GRN. In contrast, Etv2 induces the erythropoietic GRN indirectly via activation of Tal1, which requires a significantly higher threshold of Etv2 to initiate and sustain erythropoietic development. These results provide important mechanistic insight into the divergence of the endothelial and erythropoietic lineages.


Assuntos
Redes Reguladoras de Genes , Fatores de Transcrição , Endotélio/metabolismo , Fatores de Transcrição/metabolismo
2.
J Exp Med ; 216(4): 900-915, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30846482

RESUMO

Microglia play a pivotal role in the coordination of brain development and have emerged as a critical determinant in the progression of neurodegenerative diseases; however, the role of microglia in the onset and progression of neurodevelopmental disorders is less clear. Here we show that conditional deletion of αVß8 from the central nervous system (Itgb8ΔCNS mice) blocks microglia in their normal stepwise development from immature precursors to mature microglia. These "dysmature" microglia appear to result from reduced TGFß signaling during a critical perinatal window, are distinct from microglia with induced reduction in TGFß signaling during adulthood, and directly cause a unique neurodevelopmental syndrome characterized by oligodendrocyte maturational arrest, interneuron loss, and spastic neuromotor dysfunction. Consistent with this, early (but not late) microglia depletion completely reverses this phenotype. Together, these data identify novel roles for αVß8 and TGFß signaling in coordinating microgliogenesis with brain development and implicate abnormally programmed microglia or their products in human neurodevelopmental disorders that share this neuropathology.


Assuntos
Integrinas/metabolismo , Interneurônios/metabolismo , Microglia/metabolismo , Transdução de Sinais/genética , Fator de Crescimento Transformador beta1/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Feminino , Integrinas/genética , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos do Neurodesenvolvimento/metabolismo , Oligodendroglia/metabolismo , Fenótipo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Fator de Crescimento Transformador beta1/genética
3.
Nat Commun ; 8(1): 1620, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-29158473

RESUMO

Endothelial cells transduce mechanical forces from blood flow into intracellular signals required for vascular homeostasis. Here we show that endothelial NOTCH1 is responsive to shear stress, and is necessary for the maintenance of junctional integrity, cell elongation, and suppression of proliferation, phenotypes induced by laminar shear stress. NOTCH1 receptor localizes downstream of flow and canonical NOTCH signaling scales with the magnitude of fluid shear stress. Reduction of NOTCH1 destabilizes cellular junctions and triggers endothelial proliferation. NOTCH1 suppression results in changes in expression of genes involved in the regulation of intracellular calcium and proliferation, and preventing the increase of calcium signaling rescues the cell-cell junctional defects. Furthermore, loss of Notch1 in adult endothelium increases hypercholesterolemia-induced atherosclerosis in the descending aorta. We propose that NOTCH1 is atheroprotective and acts as a mechanosensor in adult arteries, where it integrates responses to laminar shear stress and regulates junctional integrity through modulation of calcium signaling.


Assuntos
Artérias/metabolismo , Mecanotransdução Celular , Receptor Notch1/metabolismo , Animais , Artérias/química , Cálcio/metabolismo , Células Endoteliais/química , Células Endoteliais/metabolismo , Endotélio Vascular/química , Endotélio Vascular/metabolismo , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor Notch1/genética , Estresse Mecânico
4.
Cell Cycle ; 16(19): 1835-1847, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28820341

RESUMO

The emergence of haematopoietic stem and progenitor cells (HSPCs) from hemogenic endothelium results in the formation of sizeable HSPC clusters attached to the vascular wall. We evaluate the cell cycle and proliferation of HSPCs involved in cluster formation, as well as the molecular signatures from their initial appearance to the point when cluster cells are capable of adult engraftment (definitive HSCs). We uncover a non-clonal origin of HSPC clusters with differing cell cycle, migration, and cell signaling attributes. In addition, we find that the complement cascade is highly enriched in mature HSPC clusters, possibly delineating a new role for this pathway in engraftment.


Assuntos
Ciclo Celular/genética , Proteínas do Sistema Complemento/genética , Endotélio Vascular/metabolismo , Hemangioblastos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Animais , Diferenciação Celular , Divisão Celular , Proteínas do Sistema Complemento/metabolismo , Embrião de Mamíferos , Endotélio Vascular/citologia , Endotélio Vascular/crescimento & desenvolvimento , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica , Hemangioblastos/citologia , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Transgênicos , Gravidez , Transdução de Sinais , Coloração e Rotulagem/métodos
5.
Nat Commun ; 8(1): 128, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743859

RESUMO

Hematopoietic stem and progenitor cells arise from the vascular endothelium of the dorsal aorta and subsequently switch niche to the fetal liver through unknown mechanisms. Here we report that vascular endothelium-specific deletion of mouse Drosha (Drosha cKO), an enzyme essential for microRNA biogenesis, leads to anemia and death. A similar number of hematopoietic stem and progenitor cells emerge from Drosha-deficient and control vascular endothelium, but Drosha cKO-derived hematopoietic stem and progenitor cells accumulate in the dorsal aorta and fail to colonize the fetal liver. Depletion of the let-7 family of microRNAs is a primary cause of this defect, as it leads to activation of leukotriene B4 signaling and induction of the α4ß1 integrin cell adhesion complex in hematopoietic stem and progenitor cells. Inhibition of leukotriene B4 or integrin rescues maturation and migration of Drosha cKO hematopoietic stem and progenitor cells to the fetal liver, while it hampers hematopoiesis in wild-type animals. Our study uncovers a previously undefined role of innate leukotriene B4 signaling as a gatekeeper of the hematopoietic niche transition.Hematopoietic stem and progenitor cells are generated first from the vascular endothelium of the dorsal aorta and then the fetal liver but what regulates this switch is unknown. Here, the authors show that changing miRNA biogenesis and leukotriene B4 signaling in mice modulates this switch in the niche.


Assuntos
Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Leucotrieno B4/metabolismo , MicroRNAs/genética , Nicho de Células-Tronco/genética , Animais , Aorta/metabolismo , Endotélio Vascular/metabolismo , Fígado/embriologia , Fígado/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Fluorescência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonuclease III/genética , Ribonuclease III/metabolismo , Transdução de Sinais/genética
6.
Elife ; 62017 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-28623666

RESUMO

Acinar cells play an essential role in the secretory function of exocrine organs. Despite this requirement, how acinar cells are generated during organogenesis is unclear. Using the acini-ductal network of the developing human and murine salivary gland, we demonstrate an unexpected role for SOX2 and parasympathetic nerves in generating the acinar lineage that has broad implications for epithelial morphogenesis. Despite SOX2 being expressed by progenitors that give rise to both acinar and duct cells, genetic ablation of SOX2 results in a failure to establish acini but not ducts. Furthermore, we show that SOX2 targets acinar-specific genes and is essential for the survival of acinar but not ductal cells. Finally, we illustrate an unexpected and novel role for peripheral nerves in the creation of acini throughout development via regulation of SOX2. Thus, SOX2 is a master regulator of the acinar cell lineage essential to the establishment of a functional organ.


Assuntos
Células Acinares/fisiologia , Diferenciação Celular , Organogênese , Fatores de Transcrição SOXB1/metabolismo , Glândulas Salivares/citologia , Glândulas Salivares/embriologia , Animais , Técnicas de Inativação de Genes , Humanos , Camundongos
7.
Stem Cell Res Ther ; 8(1): 132, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28583172

RESUMO

BACKGROUND: Non-integrating episomal vectors have become an important tool for induced pluripotent stem cell reprogramming. The episomal vectors carrying the "Yamanaka reprogramming factors" (Oct4, Klf, Sox2, and L-Myc + Lin28) are critical tools for non-integrating reprogramming of cells to a pluripotent state. However, the reprogramming process remains highly stochastic, and is hampered by an inability to easily identify clones that carry the episomal vectors. METHODS: We modified the original set of vectors to express spectrally separable fluorescent proteins to allow for enrichment of transfected cells. The vectors were then tested against the standard original vectors for reprogramming efficiency and for the ability to enrich for stoichiometric ratios of factors. RESULTS: The reengineered vectors allow for cell sorting based on reprogramming factor expression. We show that these vectors can assist in tracking episomal expression in individual cells and can select the reprogramming factor dosage. CONCLUSIONS: Together, these modified vectors are a useful tool for understanding the reprogramming process and improving induced pluripotent stem cell isolation efficiency.


Assuntos
Técnicas de Reprogramação Celular , Reprogramação Celular/genética , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Células-Tronco Pluripotentes Induzidas/citologia , Plasmídeos/genética , Análise de Variância , Diferenciação Celular/genética , Linhagem Celular , Expressão Gênica , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Plasmídeos/metabolismo , Estatísticas não Paramétricas
8.
Reprod Sci ; 23(9): 1179-92, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26944948

RESUMO

BACKGROUND: The human placenta is a source of hematopoietic stem and progenitor cells (HSPCs). The RUNX1 transcription factor is required for the formation of functional HSPCs. The impact of preeclampsia (PE) and preterm labor (PTL, spontaneous preterm labor [sPTL] and inflammatory preterm labor [iPTL]) on HSPC localization and RUNX1 expression in the human placenta is unknown. METHODS: We compared the frequency and density of HSPC in control samples from sPTL (n = 6) versus PE (n = 6) and iPTL (n = 6). We examined RUNX1 protein and RNA expression in placentas from normal pregnancies (5-22 weeks, n = 8 total) and in placentas from the aforementioned pregnancy complications (n = 5/group). RESULTS: Hematopoietic stem and progenitor cells were rare cell types, associated predominantly with the vasculature of placental villi. The HSPC density was greater in the chorionic plate (CP) compared to the villi (P < .001) and greater in PE and iPTL samples as compared to controls within the CP (not significant) and overall (P < .05). During the fetal period, RUNX1 was expressed in the mesenchyme of the CP and villi. Inflammatory PTL samples were more likely to exhibit intraluminal RUNX1(+) cell populations (P < .001) and RUNX1(+) cell clusters attached to arterial endothelial cells. CONCLUSION: Placental HSPCs likely arise from hematopoietic niches comprised RUNX1(+) mesenchyme and vascular endothelium. Pregnancy complications that result in preterm birth differentially affect placental HSPC localization and RUNX1 expression. Our results support previous findings that inflammation positively regulates hematopoiesis. We present new evidence that hemogenic endothelium may be active at later stages of human fetal development in the context of inflammation.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Trabalho de Parto Prematuro/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Contagem de Células , Feminino , Humanos , Inflamação/complicações , Inflamação/metabolismo , Trabalho de Parto Prematuro/etiologia , Trabalho de Parto Prematuro/patologia , Placenta/patologia , Pré-Eclâmpsia/patologia , Gravidez , RNA Mensageiro/metabolismo
9.
Development ; 142(15): 2719-24, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26243871

RESUMO

Endothelial-to-hematopoietic transition (EHT) occurs within a population of hemogenic endothelial cells during embryogenesis, and leads to the formation of the adult hematopoietic system. Currently, the prospective identification of specific endothelial cells that will undergo EHT, and the cellular events enabling this transition, are not known. We set out to define precisely the morphological events of EHT, and to correlate cellular morphology with the expression of the transcription factors RUNX1 and SOX17. A novel strategy was developed to allow for correlation of immunofluorescence data with the ultrastructural resolution of scanning electron microscopy. The approach can identify single endothelial cells undergoing EHT, as identified by the ratio of RUNX1 to SOX17 immunofluorescence levels, and the morphological changes associated with the transition. Furthermore, this work details a new technical resource that is widely applicable for correlative analyses of single cells in their native tissue environments.


Assuntos
Diferenciação Celular/fisiologia , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Hemangioblastos/citologia , Sistema Hematopoético/embriologia , Fatores de Transcrição SOXF/metabolismo , Análise de Célula Única/métodos , Animais , Imunofluorescência , Sistema Hematopoético/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência
10.
Nat Commun ; 6: 7739, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26204127

RESUMO

Changes in cell fate and identity are essential for endothelial-to-haematopoietic transition (EHT), an embryonic process that generates the first adult populations of haematopoietic stem cells (HSCs) from hemogenic endothelial cells. Dissecting EHT regulation is a critical step towards the production of in vitro derived HSCs. Yet, we do not know how distinct endothelial and haematopoietic fates are parsed during the transition. Here we show that genes required for arterial identity function later to repress haematopoietic fate. Tissue-specific, temporally controlled, genetic loss of arterial genes (Sox17 and Notch1) during EHT results in increased production of haematopoietic cells due to loss of Sox17-mediated repression of haematopoietic transcription factors (Runx1 and Gata2). However, the increase in EHT can be abrogated by increased Notch signalling. These findings demonstrate that the endothelial haematopoietic fate switch is actively repressed in a population of endothelial cells, and that derepression of these programs augments haematopoietic output.


Assuntos
Vasos Sanguíneos/embriologia , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Fator de Transcrição GATA2/metabolismo , Proteínas HMGB/fisiologia , Hemangioblastos/fisiologia , Fatores de Transcrição SOXF/fisiologia , Animais , Feminino , Genes Reporter , Hematopoese , Camundongos , Gravidez , Receptor Notch1/metabolismo
11.
Development ; 142(10): 1728-32, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25968308

RESUMO

In February 2015, over 200 scientists gathered for the Keystone Hematopoiesis meeting, which was held at the scenic Keystone Resort in Keystone, Colorado, USA. The meeting organizers, Patricia Ernst, Hanna Mikkola and Timm Schroeder, put together an exciting program, during which field leaders and new investigators presented discoveries that spanned developmental and adult hematopoiesis within both physiologic and pathologic contexts. Collectively, the program highlighted the increasing pace of new discoveries and the substantial progress made in the hematopoiesis field since the last Keystone meeting two years ago. In this Meeting Review, we highlight the main concepts discussed at the conference, with an emphasis on topics relevant to developmental biology.


Assuntos
Altitude , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Leucemia/metabolismo
12.
Proc Natl Acad Sci U S A ; 112(14): E1734-43, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25831528

RESUMO

Lineage specification during development involves reprogramming of transcriptional states, but little is known about how this is regulated in vivo. The chromatin remodeler chomodomain helicase DNA-binding protein 1 (Chd1) promotes an elevated transcriptional output in mouse embryonic stem cells. Here we report that endothelial-specific deletion of Chd1 leads to loss of definitive hematopoietic progenitors, anemia, and lethality by embryonic day (E)15.5. Mutant embryos contain normal numbers of E10.5 intraaortic hematopoietic clusters that express Runx1 and Kit, but these clusters undergo apoptosis and fail to mature into blood lineages in vivo and in vitro. Hematopoietic progenitors emerging from the aorta have an elevated transcriptional output relative to structural endothelium, and this elevation is Chd1-dependent. In contrast, hematopoietic-specific deletion of Chd1 using Vav-Cre has no apparent phenotype. Our results reveal a new paradigm of regulation of a developmental transition by elevation of global transcriptional output that is critical for hemogenesis and may play roles in other contexts.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/citologia , Transcrição Gênica , Animais , Aorta/metabolismo , Apoptose , Diferenciação Celular , Cromatina/metabolismo , Cruzamentos Genéticos , Proteínas de Ligação a DNA/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Família Multigênica , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo
13.
Exp Hematol ; 42(8): 707-16, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25014737

RESUMO

The mouse is integral to our understanding of hematopoietic biology. Serving as a mammalian model system, the mouse has allowed for the discovery of self-renewing multipotent stem cells, provided functional assays to establish hematopoietic stem cell identity and function, and has become a tool for understanding the differentiation capacity of early hematopoietic progenitors. The advent of genetic technology has strengthened the use of mouse models for identifying critical pathways in hematopoiesis. Full genetic knockout models, tissue-specific gene deletion, and genetic overexpression models create a system for the dissection and identification of critical cellular and genetic processes underlying hematopoiesis. However, the murine model has also introduced perplexity in understanding developmental hematopoiesis. Requisite in utero development paired with circulation has historically made defining sites of origin and expansion in the murine hematopoietic system challenging. However, the genetic accessibility of the mouse as a mammalian system has identified key regulators of hematopoietic development. Technological advances continue to generate extremely powerful tools that when translated to the murine system provide refined in vivo spatial and temporal control of genetic deletion or overexpression. Future advancements may add the ability of reversible genetic manipulation. In this review, we describe the major contributions of the murine model to our understanding of hematopoiesis.


Assuntos
Hematopoese , Animais , Transplante de Medula Óssea , Código de Barras de DNA Taxonômico , Células-Tronco Hematopoéticas/fisiologia , Humanos , Camundongos , Modelos Animais
15.
Development ; 140(8): 1720-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23533173

RESUMO

Arteriogenesis requires growth of pre-existing arteriolar collateral networks and determines clinical outcome in arterial occlusive diseases. Factors responsible for the development of arteriolar collateral networks are poorly understood. The Notch ligand Delta-like 4 (Dll4) promotes arterial differentiation and restricts vessel branching. We hypothesized that Dll4 may act as a genetic determinant of collateral arterial networks and functional recovery in stroke and hind limb ischemia models in mice. Genetic loss- and gain-of-function approaches in mice showed that Dll4-Notch signaling restricts pial collateral artery formation by modulating arterial branching morphogenesis during embryogenesis. Adult Dll4(+/-) mice showed increased pial collateral numbers, but stroke volume upon middle cerebral artery occlusion was not reduced compared with wild-type littermates. Likewise, Dll4(+/-) mice showed reduced blood flow conductance after femoral artery occlusion, and, despite markedly increased angiogenesis, tissue ischemia was more severe. In peripheral arteries, loss of Dll4 adversely affected excitation-contraction coupling in arterial smooth muscle in response to vasopressor agents and arterial vessel wall adaption in response to increases in blood flow, collectively contributing to reduced flow reserve. We conclude that Dll4-Notch signaling modulates native collateral formation by acting on vascular branching morphogenesis during embryogenesis. Dll4 furthermore affects tissue perfusion by acting on arterial function and structure. Loss of Dll4 stimulates collateral formation and angiogenesis, but in the context of ischemic diseases such beneficial effects are overruled by adverse functional changes, demonstrating that ischemic recovery is not solely determined by collateral number but rather by vessel functionality.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isquemia/fisiopatologia , Proteínas de Membrana/metabolismo , Microvasos/embriologia , Morfogênese/fisiologia , Neovascularização Fisiológica/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Análise de Variância , Animais , Proteínas de Ligação ao Cálcio , Imuno-Histoquímica , Isquemia/metabolismo , Camundongos , Microvasos/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Fluxo Sanguíneo Regional/fisiologia , Microtomografia por Raio-X
16.
Development ; 139(23): 4449-60, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23095891

RESUMO

The Notch signaling pathway is an important contributor to the development and homeostasis of the cardiovascular system. Not surprisingly, mutations in Notch receptors and ligands have been linked to a variety of hereditary diseases that impact both the heart and the vasculature. In particular, mutations in the gene encoding the human Notch ligand jagged 1 result in a multisystem autosomal dominant disorder called Alagille syndrome, which includes tetralogy of Fallot among its more severe cardiac pathologies. Jagged 1 is expressed throughout the developing embryo, particularly in endothelial cells. Here, we demonstrate that endothelial-specific deletion of Jag1 leads to cardiovascular defects in both embryonic and adult mice that are reminiscent of those in Alagille syndrome. Mutant mice display right ventricular hypertrophy, overriding aorta, ventricular septal defects, coronary vessel abnormalities and valve defects. Examination of mid-gestational embryos revealed that the loss of Jag1, similar to the loss of Notch1, disrupts endothelial-to-mesenchymal transition during endocardial cushion formation. Furthermore, adult mutant mice exhibit cardiac valve calcifications associated with abnormal matrix remodeling and induction of bone morphogenesis. This work shows that the endothelium is responsible for the wide spectrum of cardiac phenotypes displayed in Alagille Syndrome and it demonstrates a crucial role for Jag1 in valve morphogenesis.


Assuntos
Síndrome de Alagille/genética , Calcinose/genética , Proteínas de Ligação ao Cálcio/genética , Cardiomiopatias/genética , Cardiopatias Congênitas/genética , Doenças das Valvas Cardíacas/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomiopatias/metabolismo , Anomalias dos Vasos Coronários/genética , Anomalias dos Vasos Coronários/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Endotélio/citologia , Endotélio/metabolismo , Cardiopatias Congênitas/metabolismo , Comunicação Interventricular/genética , Comunicação Interventricular/metabolismo , Doenças das Valvas Cardíacas/metabolismo , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/metabolismo , Proteína Jagged-1 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Morfogênese , Técnicas de Cultura de Órgãos , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Serrate-Jagged
17.
Semin Cell Dev Biol ; 22(9): 1036-47, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22001113

RESUMO

The study of endothelial development has been intertwined with hematopoiesis since the early 20th century when a bi-potential cell (hemangioblast) was noted to produce both endothelial and hematopoietic cells. Since then, ideas regarding the nature of connection between the vascular and hematopoietic systems have ranged from a tenuous association to direct lineage origination. In this review, historical data that spans hematopoietic development is examined within the context of hemogenic endothelium. Hemogenic endothelium, a specialized endothelial population capable of hematopoiesis, is an emerging theory that has recently gained momentum. Evidence across species and decades are reviewed, as are the possible modulators of the phenomenon, which include pathways that specify definitive hematopoiesis (Runx1), arterial identity (Notch1), as well as physiological and developmental factors.


Assuntos
Células Endoteliais/fisiologia , Hemangioblastos/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Animais , Endotélio Vascular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos
18.
Development ; 137(23): 4061-72, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21062863

RESUMO

Mutations in the human Notch ligand jagged 1 (JAG1) result in a multi-system disorder called Alagille syndrome (AGS). AGS is chiefly characterized by a paucity of intrahepatic bile ducts (IHBD), but also includes cardiac, ocular, skeletal, craniofacial and renal defects. The disease penetration and severity of the affected organs can vary significantly and the molecular basis for this broad spectrum of pathology is unclear. Here, we report that Jag1 inactivation in the portal vein mesenchyme (PVM), but not in the endothelium of mice, leads to the hepatic defects associated with AGS. Loss of Jag1 expression in SM22α-positive cells of the PVM leads to defective bile duct development beyond the initial formation of the ductal plate. Cytokeratin 19-positive cells are detected surrounding the portal vein, yet they are unable to form biliary tubes, revealing an instructive role of the vasculature in liver development. These findings uncover the cellular basis for the defining feature of AGS, identify mesenchymal Jag1-dependent and -independent stages of duct development, and provide mechanistic information for the role of Jag1 in IHBD formation.


Assuntos
Síndrome de Alagille/embriologia , Síndrome de Alagille/patologia , Ductos Biliares Intra-Hepáticos/embriologia , Proteínas de Ligação ao Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Mesoderma/metabolismo , Veia Porta/metabolismo , Animais , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Análise Química do Sangue , Agregação Celular , Diferenciação Celular , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Deleção de Genes , Humanos , Proteína Jagged-1 , Fígado/embriologia , Fígado/metabolismo , Fígado/patologia , Mesoderma/embriologia , Mesoderma/patologia , Camundongos , Morfogênese , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Neovascularização Fisiológica , Fenótipo , Veia Porta/embriologia , Veia Porta/patologia , Fatores de Transcrição SOX9/metabolismo , Proteínas Serrate-Jagged , Transdução de Sinais
19.
Blood ; 116(18): 3435-44, 2010 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-20699440

RESUMO

The vitelline artery is a temporary structure that undergoes extensive remodeling during midgestation to eventually become the superior mesenteric artery (also called the cranial mesenteric artery, in the mouse). Here we show that, during this remodeling process, large clusters of hematopoietic progenitors emerge via extravascular budding and form structures that resemble previously described mesenteric blood islands. We demonstrate through fate mapping of vascular endothelium that these mesenteric blood islands are derived from the endothelium of the vitelline artery. We further show that the vitelline arterial endothelium and subsequent blood island structures originate from a lateral plate mesodermal population. Lineage tracing of the lateral plate mesoderm demonstrates contribution to all hemogenic vascular beds in the embryo, and eventually, all hematopoietic cells in the adult. The intraembryonic hematopoietic cell clusters contain viable, proliferative cells that exhibit hematopoietic stem cell markers and are able to further differentiate into myeloid and erythroid lineages. Vitelline artery-derived hematopoietic progenitor clusters appear between embryonic day 10 and embryonic day 10.75 in the caudal half of the midgut mesentery, but by embryonic day 11.0 are sporadically found on the cranial side of the midgut, thus suggesting possible extravascular migration aided by midgut rotation.


Assuntos
Artérias/embriologia , Hematopoese , Sistema Hematopoético/citologia , Sistema Hematopoético/embriologia , Ducto Vitelino/irrigação sanguínea , Animais , Endotélio Vascular/embriologia , Mesoderma/citologia , Mesoderma/ultraestrutura , Camundongos
20.
Dev Cell ; 18(1): 39-51, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20152176

RESUMO

Maintenance of single-layered endothelium, squamous endothelial cell shape, and formation of a patent vascular lumen all require defined endothelial cell polarity. Loss of beta1 integrin (Itgb1) in nascent endothelium leads to disruption of arterial endothelial cell polarity and lumen formation. The loss of polarity is manifested as cuboidal-shaped endothelial cells with dysregulated levels and mislocalization of normally polarized cell-cell adhesion molecules, as well as decreased expression of the polarity gene Par3 (pard3). beta1 integrin and Par3 are both localized to the endothelial layer, with preferential expression of Par3 in arterial endothelium. Luminal occlusion is also exclusively noted in arteries, and is partially rescued by replacement of Par3 protein in beta1-deficient vessels. Combined, our findings demonstrate that beta1 integrin functions upstream of Par3 as part of a molecular cascade required for endothelial cell polarity and lumen formation.


Assuntos
Arteríolas/embriologia , Arteríolas/metabolismo , Moléculas de Adesão Celular/metabolismo , Células Endoteliais/metabolismo , Integrina beta1/metabolismo , Neovascularização Fisiológica/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Arteríolas/citologia , Adesão Celular/fisiologia , Moléculas de Adesão Celular/genética , Proteínas de Ciclo Celular , Diferenciação Celular/fisiologia , Polaridade Celular/fisiologia , Forma Celular/fisiologia , Modelos Animais de Doenças , Células Endoteliais/citologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA