Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vet J ; 306: 106202, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39038777

RESUMO

Equine physiotherapy commonly includes basic exercises such as walking backward (BW) and voluntary lifting of single limbs (SLL), but trunk movements during these have not been studied. In order to compare the trunk kinematics during BW and SLL with forward walking (FW), nine horses were measured in FW, BW and during SLL triggered by tactile cue. Kinematics were obtained from skin markers captured by ten high-speed video cameras. Trunk angles were calculated in sagittal and horizontal planes from withers, dorsal to spinous processes of the 16th thoracic vertebra (T16), 2nd and 4th sacral vertebrae (S2, S4), WT16S2 and T16S2S4 respectively. From the hooves, maximum hoof height during swing phase and horizontal distance between hoof and median body plane during swing and stance phases were determined. Dorsoventral range of motion (ROM) and maximum flexion of WT16S2 was significantly larger in BW than in FW, while laterolateral ROM was significantly smaller during hindlimb swing phase in BW and SLL than in FW. In contrast, dorsoventral ROM of T16S2S4 was significantly smaller during stance and swing phases of hindlimbs in BW compared to FW, and throughout the movement. During forelimb swing phase, T16S2S4 ROM was significantly larger in BW than SLL. Hindhoof height in SLL was significantly higher than in FW. Distance between median body plane and hooves was significantly larger in BW than in FW, and significantly larger in BW than in SLL for hindlimb swing phase. In BW, increased lumbosacral stabilisation and the larger area of support created by fore- and hindlimbs may represent a strategy to enhance body stabilisation, as BW entails some insecurity.


Assuntos
Membro Anterior , Membro Posterior , Caminhada , Animais , Cavalos/fisiologia , Fenômenos Biomecânicos , Membro Posterior/fisiologia , Membro Anterior/fisiologia , Caminhada/fisiologia , Masculino , Feminino , Marcha/fisiologia , Tronco/fisiologia , Amplitude de Movimento Articular
2.
Animal ; 16(9): 100620, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35994970

RESUMO

Continuous accurate attainment of the body temperature of foals is important to detect early stages of severe heat stress or fever due to a systemic illness. Among a number of methods to measure body temperature, measuring rectal temperature with a digital thermometer is most frequently used due to being relatively fast and simple method. It is also comparatively accurate and correlates well with the core body temperature. However, this method requires restraining the foal for a few seconds to obtain the temperature, and it can be dangerous for the handling person. Percutaneous thermal sensing microchips (PTSMs) are a means of monitoring the body temperature of horses, which offers a non-invasive, hygienic, quick, and accurate way to measure body temperature and provide an identification number for each individual, once it is implanted. This study tested the hypothesis that PTSM has a strong relationship with a conventional body temperature measurement, i.e., measuring rectal temperature with a digital thermometer of foals during summer seasons. Thirty-two foals in three consecutive foaling seasons (2018, 2019, and 2020 season) were implanted a PTSM into the right pectoral muscle, the right splenius muscle, the right gluteal muscle, and the nuchal ligament as early as two weeks after birth. The four PTSM temperatures, rectal temperature, and climate conditions (air temperature, relative humidity, and wet-bulb globe temperature) were obtained simultaneously during the three summer seasons and paired for comparison analysis. Among the PTSM temperatures, the pectoral muscle had the highest correlation and the least differences with rectal temperature. Using PTSM was safe, easy, and reliable for attaining body temperature in foals.


Assuntos
Temperatura Corporal , Termômetros , Animais , Temperatura Corporal/fisiologia , Febre/veterinária , Cavalos , Humanos , Estações do Ano , Temperatura , Termômetros/veterinária
3.
Vet J ; 252: 105353, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31554589

RESUMO

Pressure in the atlanto-axial region due to hyperflexion ('rollkur') may influence the development of a nuchal bursa, as adventitious bursae may be caused by pressure. Investigating the pressure between the nuchal ligament and atlas/axis in a flexed position may provide information on the pathogenesis of nuchal bursitis. In this study, ten equine head and neck specimens with one side of the soft tissues over the cervical vertebral spine removed were placed in lateral recumbency on a table in neutral, mildly flexed, and hyperflexed head and neck positions. Angulations of the neck were measured using markers placed on the nuchal ligament and drilled into the skull, vertebrae and withers. In six specimens, the pressure between the nuchal ligament and the atlas and the axis was measured using an inflatable air pouch. Hyperflexion was associated with the highest nuchal ligament length and with the highest pressure values at the site of the nuchal bursa over the atlas (99±24mmHg, more than four times the pressure in the neutral position) and over the axis (77±30mmHg, more than twice the pressure values of the neutral position). Also, over the three head and neck positions, neck flexion angles were highly correlated with pressure values and with nuchal ligament length. This marked increase in pressure at the level of atlas and axis caused by head and neck hyperflexion should be considered during training of horses at risk of, or diagnosed with, nuchal bursitis.


Assuntos
Vértebras Cervicais/anatomia & histologia , Cavalos/anatomia & histologia , Ligamentos Articulares/anatomia & histologia , Animais , Fenômenos Biomecânicos , Cadáver , Vértebras Cervicais/fisiologia , Cavalos/fisiologia , Ligamentos Articulares/fisiologia , Amplitude de Movimento Articular
4.
Comp Exerc Physiol ; 10(2): 75-88, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-28680481

RESUMO

In vertebrates ageing is characterized by reduced viscoelasticity of the ligamentous and tendineous structures and fibre changes in muscle. Also, some vertebral joint degeneration develops with ageing. The aim of this study was to apply dynamic time warping to compare the temporal characteristics of the surface electromyography (sEMG) data and to illustrate the differences in the pattern of muscle use during tasks of daily life in old and mature horses. In vivo kinematics (24 skin markers) and sEMG measurements of neck extensors and flexors were taken in five mature horses (age 10 ± 2 years, half of mean life expectancy) and five old horses (age 25 ± 5 years, older than the mean life expectancy). All horses had the same level of activity in the 12 months prior to the measurement. Tasks measured were neck flexion and neck extension as well as neutral neck position. Muscle activation, minimum and maximum muscle activation were collected. Quartiles of muscle activity based on the maximum observed activity of each muscle were calculated to document the relative increase of activity level during the task. Kinematics as well as overall muscle activity patterns were similar across horses and age groups. However, in the neutral position old horses showed increased extensor activity compared to mature horses, indicating that old equine muscle requires more activity to counteract gravity. Dynamic time warping specified optimal temporal alignments of time series, and different temporal performances were identified. The age groups differed during the flexion task, while extension and neutral were more similar. The results of this study show that even in the second half of life and in the absence of muscle disuse the muscular strategy employed by horses continues to be adapted.

5.
J Biomech ; 45(1): 202-6, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22074593

RESUMO

Handball is one of the top four athletic games with highest injury risks. The jump shot is the most accomplished goal shot technique and the lower extremities are mostly injured. As a basis for ankle sprain simulation, the aim of this study was to extend the ankle region of an existing musculoskeletal full-body model through incorporation of three prominent lateral ankle ligaments: ligamentum fibulotalare anterius (LFTA), ligamentum fibulotalare posterius (LFTP), ligamentum fibulocalcaneare (LFC). The specific objective was to calculate and visualise ligament force scenarios during the jumping and landing phases of controlled jump shots. Recorded kinematic data of performed jump shots and the corresponding ground reaction forces were used to perform inverse dynamics. The calculated peak force of the LFTA (107 N) was found at maximum plantarflexion and of the LFTP (150 N) at maximum dorsiflexion. The peak force of the LFC (190 N) was observed at maximum dorsiflexion combined with maximum eversion. Within the performed jump shots, the LFTA showed a peak force (59 N to 69 N) during maximum plantarflexion in the final moment of the lift off. During landing, the force developed by the LFTA reached its peak value (61 N to 70 N) at the first contact with the floor. After that, the LFTP developed a peak force (70 N to 118 N). This model allows the calculation of forces in lateral ankle ligaments. The information obtained in this study can serve as a basis for future research on ankle sprain and ankle sprain simulation.


Assuntos
Articulação do Tornozelo/fisiologia , Traumatismos em Atletas/fisiopatologia , Desempenho Atlético/fisiologia , Ligamentos Laterais do Tornozelo/fisiologia , Adolescente , Tornozelo/fisiologia , Traumatismos do Tornozelo/fisiopatologia , Fenômenos Biomecânicos/fisiologia , Humanos , Atividade Motora/fisiologia , Amplitude de Movimento Articular/fisiologia , Entorses e Distensões/fisiopatologia , Estresse Mecânico
6.
Equine Vet J Suppl ; (38): 401-6, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21059036

RESUMO

REASONS FOR PERFORMING STUDY: Identifying the underlying problem of equine back pain and diseases of the spine are significant problems in veterinary orthopaedics. A study to validate a preliminary biomechanical model of the equine back based on CT images including longissimus dorsi (LD) muscle is therefore important. OBJECTIVES: Validation of the back model by comparing the shortening of LD muscles in the model with integrated EMG (IEMG) at stance during induced lateral flexion of the spine. METHODS: Longissimus dorsi muscle activity at stance has been used for validation. EMG electrodes were placed laterally at the level of T12, T16 and L3. Reflective markers have been attached on top of the spinous processes T5, T12, T16, L1 and the sacral bone (OS1, OS2) for motion tracking analysis. A virtual model of the equine's back (T1-S5) was built with inclusion of a simplified LD muscle by 2 separate contours left and right of the spine, starting at tuber coxae laterally and attaching to the spinous process T5 medially. Shortening of LD during induced lateral flexion caused by the kinematic data (input) was compared to the 3 EMG signals (T12, T16 and L3) on the active side via correlation. RESULTS: Pearson correlation coefficient between IEMG and shortening length of LD in the model was (mean ± s.d.) 0.95 ± 0.07 for the left side and 0.91 ± 0.07 for the right side of LD. CONCLUSIONS: Activity of the LD muscles is mainly responsible for stabilisation of the vertebral column with isometric muscle contraction against dynamic forces in walk and trot. This validation requires muscle shortening in the back, like induced lateral flexion at stance. The length of the shortening muscle model and the IEMG show a linear relationship. These findings will help to model the LD for forward simulations, e.g. from force to motion.


Assuntos
Dorso/fisiologia , Cavalos/fisiologia , Modelos Biológicos , Músculo Esquelético/fisiologia , Animais , Fenômenos Biomecânicos , Cadáver , Simulação por Computador , Feminino
7.
Equine Vet J Suppl ; (38): 455-61, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21059045

RESUMO

REASONS FOR PERFORMING STUDY: Skeletal muscle activity can be concentric or eccentric, anisometric or isometric and correlation of the equine splenius muscle activity with the movement of its effector joints at walk and trot has not yet been fully characterised. OBJECTIVE: Investigating activity of the splenius muscle together with kinematics of head and cranial neck at walk and trot. MATERIALS AND METHODS: Kinematics and surface electromyography were measured in 6 horses (8-20-years-old, 450-700 kg) without signs of neck pain. Markers were placed on left and right crista facialis, and on left and right cervical vertebrae 1 and 3. Head and neck angle was calculated in sagittal and horizontal planes. Electrodes were placed over both splenius muscles at the level of C2. Left and right muscle activity was compared using Student t test for paired samples and correlations calculated using Pearson correlation coefficient. Significance was set at P < 0.05. RESULTS: In all horses, maximum surface electromyography (sEMG) values at the trot were higher than at the walk. The intraindividual differences between maximum and minimum values of the EMG ranged from 45-127 mV in walk and from 154-524 mV in trot. Flexion-extension C1 angle changed by 43° in walk and 27° in trot. For each motion cycle, 2 EMG maxima were found in both gaits, occurring just prior to maximum extension of the C1 angle. Lateral bending at C1 angle changed by 16° in walk and 17° in trot and EMG reached maximum values bilaterally during maximum lateral bending at walk. CONCLUSIONS: The splenius muscle reaches maximum activity at the beginning of the forelimb stance phases in trot, indicating functional stabilisation against flexion of the head and neck. Unilateral activity of the splenius muscle representing stabilisation against lateral movement was not found.


Assuntos
Eletromiografia/veterinária , Marcha/fisiologia , Cavalos/fisiologia , Músculo Esquelético/fisiologia , Pescoço/fisiologia , Animais , Fenômenos Biomecânicos , Teste de Esforço , Feminino , Masculino
8.
Equine Vet J Suppl ; (38): 516-22, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21059054

RESUMO

REASON FOR PERFORMING STUDY: The motion of the atlanto-occipital, cervical vertebral and cervicothoracic joints play an important role in equestrian sports and they are also common sites for lesions limiting performance in horses. OBJECTIVES: To calculate inverse kinematics based on cervical vertebral motion and to develop a model close to the measured neck movements. MATERIALS AND METHODS: Measurements were recorded in 6 horses without neck pain. Reflective markers were placed on both cristae facialis, both sides of cervical vertebra 1, 3 and 6 on the withers and hooves. The neck model was reconstructed from CT scans of the osseus structures and was developed in SIMM (Software for Interactive Musculoskeletal Modelling). Inverse kinematics calculation was done in OpenSim. Three degrees of freedom: Flexion-extension (FE), axial rotation (AR) and lateral bending (LB) were considered. The simulated motion was generated from the recorded motion of the skin markers. The differences in angular range of motion (ROM) of the joints were analysed using paired sample t tests. RESULTS: From the model, the smallest FE ROM was in the C5-C6 joint (2° ± 1°) and the largest was in the C3-C4 joint (11° ± 5°). The smallest AR ROM was in the C5-C6 joint (2° ± 1°) and largest AR ROM was in the atlantoaxial joint (7° ± 2°). The smallest LB ROM was in the C5-C6 joint (2° ± 1°) and the largest LB ROM was in the cervicothoracic joint (18° ± 5°). There were significant differences between the ROM of joints in 51 of 168 comparisons (P < 0.05). CONCLUSIONS: The result of the motion of each joint gives an insight into the biomechanics of the equine neck. The small FE ROM at C5-C6 illustrates the pathogenetical relevance of the model for the development of osteoarthritis. The calculated data also provides a source for inverse dynamics.


Assuntos
Cavalos/fisiologia , Pescoço/fisiologia , Coluna Vertebral/fisiologia , Caminhada/fisiologia , Animais , Feminino , Articulações/fisiologia , Masculino
9.
Equine Vet J Suppl ; (38): 523-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21059055

RESUMO

REASON FOR PERFORMING STUDY: The rectus abdominis (RA) and oblique external abdominal (OEA) muscles are both part of the construction of the equine trunk and thought to be essential for the function of the spine during locomotion. Although RA activity at trot has previously been investigated, the relationship between OEA and RA at walk and trot has not yet been described. OBJECTIVES: To document abdominal muscle activities during walk and trot, and test the hypothesis that muscle activity at walk would be smaller than at trot. MATERIALS AND METHODS: Six horses (8-20 years old, 450-700 kg) were used for surface electromyography (EMG) measurements, with EMG electrodes placed caudal to the sternum (RA) and at the level of the 16th rib (OEA). On all hooves, the withers and the sacrum reflective markers were placed to determine motion cycles. Normal distribution of data was tested using a Kolmogorov-Smirnov test and Student's t test was used to compare left-right and walk-trot differences (P < 0.05). RESULTS: Minimum, maximum and mean EMG values recorded at walk were significantly higher at trot than at walk in all horses for OEA and in 5/6 horses for RA. At walk, EMG activity ranged from 8-44 mV (RA) and 7-54 mV (OEA). At trot, EMG activity ranged from 18-150 mV (RA) and 27-239 mV (OEA). There were statistically significant differences between maximum activities of left and right OEA and RA muscles at walk in all horses, and in 4/6 horses at trot. CONCLUSIONS: Muscle activities of OEA and RA are smaller at walk than at trot. At walk, the OEA/RA ratio is lower than at trot. There are more significant correlations between muscle activities of both RA and OEA and limb movements at walk than at the trot.


Assuntos
Eletromiografia/veterinária , Marcha/fisiologia , Cavalos/fisiologia , Músculo Esquelético/fisiologia , Abdome/fisiologia , Animais , Eletromiografia/métodos , Teste de Esforço , Feminino , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA