RESUMO
Due to increased lactate production during glucose metabolism, tumor cells heavily rely on efficient lactate transport to avoid intracellular lactate accumulation and acidification. Monocarboxylate transporter 4 (MCT4/SLC16A3) is a lactate transporter that plays a central role in tumor pH modulation. The discovery and optimization of a novel class of MCT4 inhibitors (hit 9a), identified by a cellular screening in MDA-MB-231, is described. Direct target interaction of the optimized compound 18n with the cytosolic domain of MCT4 was shown after solubilization of the GFP-tagged transporter by fluorescence cross-correlation spectroscopy and microscopic studies. In vitro treatment with 18n resulted in lactate efflux inhibition and reduction of cellular viability in MCT4 high expressing cells. Moreover, pharmacokinetic properties of 18n allowed assessment of lactate modulation and antitumor activity in a mouse tumor model. Thus, 18n represents a valuable tool for investigating selective MCT4 inhibition and its effect on tumor biology.
Assuntos
Antineoplásicos/uso terapêutico , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Proteínas Musculares/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Ácidos Picolínicos/uso terapêutico , Sulfonamidas/uso terapêutico , Animais , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HEK293 , Humanos , Ácido Láctico/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos SCID , Estrutura Molecular , Ácidos Picolínicos/síntese química , Ácidos Picolínicos/farmacologia , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/farmacologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
A series of carboxamide and sulfonamide alkyl (p-xylyl and benzyl) 1-(2-methoxyphenyl)piperazine (o-OMe-PhP) and 1-(2,3-dichlorophenyl)piperazine (2,3-DCPP) analogs were prepared and tested for their affinity to bind to serotonin 5-HT1A /5-HT6 /5-HT7 and dopamine D2 receptors. This chemical modification let us explore the impact of the replacement of the carboxamide by the sulfonamide group on the affinity changes. In both the o-OMe-PhP and 2,3-DCPP series, the relative activities of the carboxamides versus sulfonamides toward the 5-HT1A /5-HT6 /5-HT7 and D2 receptors show similar trends. Varied or similar activities for particular receptors were found for the carboxamides/sulfonamides with p-xylyl spacer, while of the two classes of carboxamides and sulfonamides examined, benzyl derivatives of the sulfonamides displayed the highest serotoninergic affinity, in particular to the 5-HT7 receptors (Ki 8-85 nM). The Ki values revealed that, irrespective of the carboxamide/sulfonamide zone, both p-xylyl and benzyl derivatives had the highest affinity for the dopamine D2 receptor (i.e., 16 out of 24 compounds investigated have an affinity below 100 nM). A molecular modeling study of carboxamide 9a and sulfonamide 9b showed that their binding effects to each of 5-HT1A R and D2 R created binding modes interaction with different conserved receptors residues. Structural similarities of carboxamide 9a in complexes with a 5-HT1A R (9aI) and D2 R (9aII) are over 83%, while the respective similarities of sulfonamide 9b structures (9bI/9bII) are only about 40%.