Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mil Med ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38243767

RESUMO

INTRODUCTION: Military trainees are at increased risk for infectious disease outbreaks because of the unique circumstances of the training environment (e.g., close proximity areas and physiologic/psychologic stress). Standard medical countermeasures in military training settings include routine immunization (e.g., influenza and adenovirus) as well as chemoprophylaxis [e.g., benzathine penicillin G (Bicillin) for the prevention of group A streptococcal disease] for pathogens associated with outbreaks in these settings. In a population of U.S. Army Infantry trainees, we evaluated changes in the oral microbiome during a 14-week military training cycle. MATERIALS AND METHODS: Trainees were enrolled in an observational cohort study in 2015-2016. In 2015, Bicillin was administered to trainees to ameliorate the risk of group A Streptococcus outbreaks, whereas in 2016, trainees did not receive a Bicillin inoculation. Oropharyngeal swabs were collected from participants at days 0, 7, 14, 28, 56, and 90 of training. Swabs were collected, flash frozen, and stored. DNA was extracted from swabs, and amplicon sequencing of the 16s rRNA gene was performed. Microbiome dynamics were evaluated using the QIIME 2 workflow along with DADA2, SINA with SILVA, and an additional processing in R. RESULTS: We observed that microbiome samples from the baseline (day 0) visit were distinct from one another, whereas samples collected on day 14 exhibited significant microbiome convergence. Day 14 convergence was coincident with an increase in DNA sequences associated with Streptococcus, though there was not a significant difference between Streptococcus abundance over time between 2015 and 2016 (P = .07), suggesting that Bicillin prophylaxis did not significantly impact overall Streptococcus abundance. CONCLUSIONS: The temporary convergence of microbiomes is coincident with a rise in communicable infections in this population. The dynamic response of microbiomes during initial military training supports similar observations in the literature of transient convergence of the human microbiome under cohabitation in the time frame including in this experiment. This population and the associated longitudinal studies allow for controlled studies of human microbiome under diverse conditions.

2.
Infect Control Hosp Epidemiol ; 43(12): 1790-1795, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34903308

RESUMO

BACKGROUND: Healthcare workers (HCWs) not adhering to physical distancing recommendations is a risk factor for acquisition of severe acute respiratory coronavirus virus 2 (SARS-CoV-2). The study objective was to assess the impact of interventions to improve HCW physical distancing on actual distance between HCWs in a real-life setting. METHODS: HCWs voluntarily wore proximity beacons to measure the number and intensity of physical distancing interactions between each other in a pediatric intensive care unit. We compared interactions before and after implementing a bundle of interventions including changes to the layout of workstations, cognitive aids, and individual feedback from wearable proximity beacons. RESULTS: Overall, we recorded 10,788 interactions within 6 feet (∼2 m) and lasting >5 seconds. The number of HCWs wearing beacons fluctuated daily and increased over the study period. On average, 13 beacons were worn daily (32% of possible staff; range, 2-32 per day). We recorded 3,218 interactions before the interventions and 7,570 interactions after the interventions began. Using regression analysis accounting for the maximum number of potential interactions if all staff had worn beacons on a given day, there was a 1% decline in the number of interactions per possible interactions in the postintervention period (incident rate ratio, 0.99; 95% confidence interval, 0.98-1.00; P = .02) with fewer interactions occurring at nursing stations, in workrooms and during morning rounds. CONCLUSIONS: Using quantitative data from wearable proximity beacons, we found an overall small decline in interactions within 6 feet between HCWs in a busy intensive care unit after a multifaceted bundle of interventions was implemented to improve physical distancing.


Assuntos
COVID-19 , SARS-CoV-2 , Criança , Humanos , Distanciamento Físico , COVID-19/prevenção & controle , Pessoal de Saúde , Unidades de Terapia Intensiva Pediátrica
3.
JAMIA Open ; 4(4): ooab095, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34926997

RESUMO

OBJECTIVE: Despite the importance of physical distancing in reducing SARS-CoV-2 transmission, this practice is challenging in healthcare. We piloted use of wearable proximity beacons among healthcare workers (HCWs) in an inpatient unit to highlight considerations for future use of trackable technologies in healthcare settings. MATERIALS AND METHODS: We performed a feasibility pilot study in a non-COVID adult medical unit from September 28 to October 28, 2020. HCWs wore wearable proximity beacons, and interactions defined as <6 feet for ≥5 s were recorded. Validation was performed using direct observations. RESULTS: A total of 6172 close proximity interactions were recorded, and with the removal of 2033 false-positive interactions, 4139 remained. The highest proportion of interactions occurred between 7:00 Am-9:00 Am. Direct observations of HCWs substantiated these findings. DISCUSSION: This pilot study showed that wearable beacons can be used to monitor and quantify HCW interactions in inpatient settings. CONCLUSION: Technology can be used to track HCW physical distancing.

4.
Am J Trop Med Hyg ; 105(3): 818-821, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34280144

RESUMO

The burden of nosocomial respiratory infections in rural southern Africa is poorly understood. We established a surveillance program at a rural Zambian hospital to detect influenza-like illness (ILI) and respiratory infections among hospitalized patients and a cohort of healthcare workers (HCWs). Nasopharyngeal specimens from symptomatic patients and HCWs underwent broadly multiplexed molecular testing to detect viruses and atypical bacteria. During 1 year of surveillance, 15 patients (1.7% of admissions) developed ILI more than 48 hours after admission. Among 44 HCWs, 19 (43%) experienced at least one ILI episode, with a total of 31 ILI episodes detected. Respiratory viruses were detected in 45% of patient and 55% of HCW specimens. The cumulative incidence of influenza infection among HCWs over 1 year was 9%. Overall, respiratory viruses were commonly found among patients and HCWs in a rural Zambian hospital with limited infection control infrastructure.


Assuntos
Infecção Hospitalar/epidemiologia , Pessoal de Saúde/estatística & dados numéricos , Hospitais Rurais , Influenza Humana/epidemiologia , Infecções por Picornaviridae/epidemiologia , Infecções Respiratórias/epidemiologia , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Infecção Hospitalar/transmissão , Infecção Hospitalar/virologia , Feminino , Humanos , Controle de Infecções , Transmissão de Doença Infecciosa do Profissional para o Paciente/estatística & dados numéricos , Vacinas contra Influenza/uso terapêutico , Influenza Humana/prevenção & controle , Influenza Humana/transmissão , Masculino , Quartos de Pacientes , Infecções por Picornaviridae/transmissão , Estudos Prospectivos , Infecções Respiratórias/transmissão , Infecções Respiratórias/virologia , Rhinovirus , Zâmbia/epidemiologia
5.
Wound Repair Regen ; 29(5): 766-776, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33991156

RESUMO

Common treatment for venous leg wounds includes topical wound dressings with compression. At each dressing change, wounds are debrided and washed; however, the effect of the washing procedure on the wound microbiome has not been studied. We hypothesized that wound washing may alter the wound microbiome. To characterize microbiome changes with respect to wound washing, swabs from 11 patients with chronic wounds were sampled before and after washing, and patient microbiomes were characterized using 16S rRNA sequencing and culturing. Microbiomes across patient samples prior to washing were typically polymicrobial but varied in the number and type of bacterial genera present. Proteus and Pseudomonas were the dominant genera in the study. We found that washing does not consistently change microbiome diversity but does cause consistent changes in microbiome composition. Specifically, washing caused a decrease in the relative abundance of the most highly represented genera in each patient cluster. The finding that venous leg ulcer wound washing, a standard of care therapy, can induce changes in the wound microbiome is novel and could be potentially informative for future guided therapy strategies.


Assuntos
Microbiota , Úlcera Varicosa , Bandagens , Humanos , RNA Ribossômico 16S/genética , Úlcera Varicosa/terapia , Cicatrização
6.
Microbiome ; 9(1): 22, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482907

RESUMO

BACKGROUND: Skin, the largest organ of the human body by weight, hosts a diversity of microorganisms that can influence health. The microbial residents of the skin are now appreciated for their roles in host immune interactions, wound healing, colonization resistance, and various skin disorders. Still, much remains to be discovered in terms of the host pathways influenced by skin microorganisms, as well as the higher-level skin properties impacted through these microbe-host interactions. Towards this direction, recent efforts using mouse models point to pronounced changes in the transcriptional profiles of the skin in response to the presence of a microbial community. However, there is a need to quantify the roles of microorganisms at both the individual and community-level in healthy human skin. In this study, we utilize human skin equivalents to study the effects of individual taxa and a microbial community in a precisely controlled context. Through transcriptomics analysis, we identify key genes and pathways influenced by skin microbes, and we also characterize higher-level impacts on skin processes and properties through histological analyses. RESULTS: The presence of a microbiome on a 3D skin tissue model led to significantly altered patterns of gene expression, influencing genes involved in the regulation of apoptosis, proliferation, and the extracellular matrix (among others). Moreover, microbiome treatment influenced the thickness of the epidermal layer, reduced the number of actively proliferating cells, and increased filaggrin expression. Many of these findings were evident upon treatment with the mixed community, but either not detected or less pronounced in treatments by single microorganisms, underscoring the impact that a diverse skin microbiome has on the host. CONCLUSIONS: This work contributes to the understanding of how microbiome constituents individually and collectively influence human skin processes and properties. The results show that, while it is important to understand the effect of individual microbes on the host, a full community of microbes has unique and pronounced effects on the skin. Thus, in its impacts on the host, the skin microbiome is more than the sum of its parts. Video abstract.


Assuntos
Interações entre Hospedeiro e Microrganismos , Microbiota , Fenômenos Fisiológicos da Pele , Pele/metabolismo , Pele/microbiologia , Proteínas Filagrinas , Perfilação da Expressão Gênica , Voluntários Saudáveis , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Microbiota/genética , Fenômenos Fisiológicos da Pele/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA