Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
2.
NPJ Vaccines ; 5: 91, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083026

RESUMO

Development of effective preventative interventions against SARS-CoV-2, the etiologic agent of COVID-19 is urgently needed. The viral surface spike (S) protein of SARS-CoV-2 is a key target for prophylactic measures as it is critical for the viral replication cycle and the primary target of neutralizing antibodies. We evaluated design elements previously shown for other coronavirus S protein-based vaccines to be successful, e.g., prefusion-stabilizing substitutions and heterologous signal peptides, for selection of a S-based SARS-CoV-2 vaccine candidate. In vitro characterization demonstrated that the introduction of stabilizing substitutions (i.e., furin cleavage site mutations and two consecutive prolines in the hinge region of S2) increased the ratio of neutralizing versus non-neutralizing antibody binding, suggestive for a prefusion conformation of the S protein. Furthermore, the wild-type signal peptide was best suited for the correct cleavage needed for a natively folded protein. These observations translated into superior immunogenicity in mice where the Ad26 vector encoding for a membrane-bound stabilized S protein with a wild-type signal peptide elicited potent neutralizing humoral immunity and cellular immunity that was polarized towards Th1 IFN-γ. This optimized Ad26 vector-based vaccine for SARS-CoV-2, termed Ad26.COV2.S, is currently being evaluated in a phase I clinical trial (ClinicalTrials.gov Identifier: NCT04436276).

3.
Nature ; 586(7830): 583-588, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32731257

RESUMO

A safe and effective vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be required to end the coronavirus disease 2019 (COVID-19) pandemic1-8. For global deployment and pandemic control, a vaccine that requires only a single immunization would be optimal. Here we show the immunogenicity and protective efficacy of a single dose of adenovirus serotype 26 (Ad26) vector-based vaccines expressing the SARS-CoV-2 spike (S) protein in non-human primates. Fifty-two rhesus macaques (Macaca mulatta) were immunized with Ad26 vectors that encoded S variants or sham control, and then challenged with SARS-CoV-2 by the intranasal and intratracheal routes9,10. The optimal Ad26 vaccine induced robust neutralizing antibody responses and provided complete or near-complete protection in bronchoalveolar lavage and nasal swabs after SARS-CoV-2 challenge. Titres of vaccine-elicited neutralizing antibodies correlated with protective efficacy, suggesting an immune correlate of protection. These data demonstrate robust single-shot vaccine protection against SARS-CoV-2 in non-human primates. The optimal Ad26 vector-based vaccine for SARS-CoV-2, termed Ad26.COV2.S, is currently being evaluated in clinical trials.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Macaca mulatta , Pandemias/prevenção & controle , Pneumonia Viral/imunologia , Pneumonia Viral/prevenção & controle , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Animais , COVID-19 , Vacinas contra COVID-19 , Modelos Animais de Doenças , Feminino , Imunidade Celular , Imunidade Humoral , Macaca mulatta/imunologia , Macaca mulatta/virologia , Masculino , SARS-CoV-2 , Vacinação , Carga Viral
4.
Science ; 362(6414): 598-602, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30385580

RESUMO

Broadly neutralizing antibodies against highly variable pathogens have stimulated the design of vaccines and therapeutics. We report the use of diverse camelid single-domain antibodies to influenza virus hemagglutinin to generate multidomain antibodies with impressive breadth and potency. Multidomain antibody MD3606 protects mice against influenza A and B infection when administered intravenously or expressed locally from a recombinant adeno-associated virus vector. Crystal and single-particle electron microscopy structures of these antibodies with hemagglutinins from influenza A and B viruses reveal binding to highly conserved epitopes. Collectively, our findings demonstrate that multidomain antibodies targeting multiple epitopes exhibit enhanced virus cross-reactivity and potency. In combination with adeno-associated virus-mediated gene delivery, they may provide an effective strategy to prevent infection with influenza virus and other highly variable pathogens.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Camelídeos Americanos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/ultraestrutura , Anticorpos Antivirais/química , Anticorpos Antivirais/ultraestrutura , Cristalografia por Raios X , Cães , Feminino , Epitopos Imunodominantes/química , Epitopos Imunodominantes/genética , Epitopos Imunodominantes/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Biblioteca de Peptídeos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Anticorpos de Domínio Único
5.
Acta Neuropathol Commun ; 6(1): 43, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855358

RESUMO

Misfolding and aggregation of tau protein are closely associated with the onset and progression of Alzheimer's Disease (AD). By interrogating IgG+ memory B cells from asymptomatic donors with tau peptides, we have identified two somatically mutated VH5-51/VL4-1 antibodies. One of these, CBTAU-27.1, binds to the aggregation motif in the R3 repeat domain and blocks the aggregation of tau into paired helical filaments (PHFs) by sequestering monomeric tau. The other, CBTAU-28.1, binds to the N-terminal insert region and inhibits the spreading of tau seeds and mediates the uptake of tau aggregates into microglia by binding PHFs. Crystal structures revealed that the combination of VH5-51 and VL4-1 recognizes a common Pro-Xn-Lys motif driven by germline-encoded hotspot interactions while the specificity and thereby functionality of the antibodies are defined by the CDR3 regions. Affinity improvement led to improvement in functionality, identifying their epitopes as new targets for therapy and prevention of AD.


Assuntos
Linfócitos B/metabolismo , Imunoglobulina G/farmacologia , Cadeias Pesadas de Imunoglobulinas/metabolismo , Cadeias Leves de Imunoglobulina/metabolismo , Proteínas tau/imunologia , Proteínas tau/metabolismo , Adolescente , Adulto , Idoso , Especificidade de Anticorpos , Linfócitos B/efeitos dos fármacos , Cristalização , Relação Dose-Resposta a Droga , Feminino , Humanos , Epitopos Imunodominantes/metabolismo , Masculino , Microglia/metabolismo , Microscopia de Força Atômica , Pessoa de Meia-Idade , Modelos Moleculares , Dados de Sequência Molecular , Agregados Proteicos , Adulto Jovem
6.
Front Immunol ; 7: 399, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27746785

RESUMO

Interactions with receptors for the Fc region of IgG (FcγRs) have been shown to contribute to the in vivo protection against influenza A viruses provided by broadly neutralizing antibodies (bnAbs) that bind to the viral hemagglutinin (HA) stem. In particular, Fc-mediated antibody-dependent cellular cytotoxicity (ADCC) has been shown to contribute to protection by stem-binding bnAbs. Fc-mediated effector functions appear not to contribute to protection provided by strain-specific HA head-binding antibodies. We used a panel of anti-stem and anti-head influenza A and B monoclonal antibodies with identical human IgG1 Fc domains and investigated their ability to mediate ADCC-associated FcγRIIIa activation. Antibodies which do not interfere with sialic acid binding of HA can mediate FcγRIIIa activation. However, the FcγRIIIa activation was inhibited when a mutant HA, unable to bind sialic acids, was used. Antibodies which block sialic acid receptor interactions of HA interfered with FcγRIIIa activation. The inhibition of FcγRIIIa activation by HA head-binding and sialic acid receptor-blocking antibodies was confirmed in plasma samples of H5N1 vaccinated human subjects. Together, these results suggest that in addition to Fc-FcγR binding, interactions between HA and sialic acids on immune cells are required for optimal Fc-mediated effector functions by anti-HA antibodies.

7.
Science ; 337(6100): 1343-8, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22878502

RESUMO

Identification of broadly neutralizing antibodies against influenza A viruses has raised hopes for the development of monoclonal antibody-based immunotherapy and "universal" vaccines for influenza. However, a substantial part of the annual flu burden is caused by two cocirculating, antigenically distinct lineages of influenza B viruses. Here, we report human monoclonal antibodies, CR8033, CR8071, and CR9114, that protect mice against lethal challenge from both lineages. Antibodies CR8033 and CR8071 recognize distinct conserved epitopes in the head region of the influenza B hemagglutinin (HA), whereas CR9114 binds a conserved epitope in the HA stem and protects against lethal challenge with influenza A and B viruses. These antibodies may inform on development of monoclonal antibody-based treatments and a universal flu vaccine for all influenza A and B viruses.


Assuntos
Anticorpos Monoclonais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Epitopos Imunodominantes/imunologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Sequência Conservada , Humanos , Epitopos Imunodominantes/química , Camundongos , Dados de Sequência Molecular , Testes de Neutralização , Conformação Proteica
8.
J Gen Virol ; 88(Pt 11): 2915-2924, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17947512

RESUMO

Replication-incompetent adenovirus type 35 (rAd35) represents a potent vaccine carrier that elicits strong, antigen-specific T- and B-cell responses in diverse preclinical models. Moreover, Ad35 is rare in human populations, resulting in the absence of neutralizing antibodies against this carrier, in contrast to the commonly used rAd5. Therefore, rAd35 is being investigated as a vaccine carrier for a number of diseases for which an effective vaccine is needed, including malaria, AIDS and tuberculosis. However, it can be perceived that effective immunization will require insertion of multiple antigens into adenoviral vectors. We therefore wanted to create rAd35 vectors carrying double expression cassettes, to expand within one vector the number of insertion sites for foreign DNA encoding antigenic proteins. We show that it is possible to generate rAd35 vectors carrying two cytomegalovirus promoter-driven expression cassettes, provided that the polyadenylation signals in each expression cassette are not identical. We demonstrate excellent rAd35 vector stability and show that expression of a transgene is not influenced by the presence of a second expression cassette. Moreover, by using two model vaccine antigens, i.e. the human immunodeficiency virus-derived Env-gp120 protein and the Plasmodium falciparum-derived circumsporozoite protein, we demonstrate that potent T- and B-cell responses are induced to both antigens expressed from a single vector. Such rAd35 vectors thus expand the utility of rAd35 vaccine carriers for the development of vaccines against, for example, malaria, AIDS and tuberculosis.


Assuntos
Adenoviridae/genética , Expressão Gênica , Vetores Genéticos , Vacinas Virais/genética , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antivirais/sangue , Citomegalovirus/genética , Proteína gp120 do Envelope de HIV/genética , Proteína gp120 do Envelope de HIV/imunologia , Interferon gama/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Regiões Promotoras Genéticas , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Sinais de Poliadenilação na Ponta 3' do RNA/genética , Baço/imunologia , Linfócitos T/imunologia , Vacinas Sintéticas/genética , Replicação Viral/genética
9.
J Virol ; 78(23): 13207-15, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15542673

RESUMO

A novel plasmid-based adenovirus vector system that enables manufacturing of replication-incompetent (DeltaE1) adenovirus type 11 (Ad11)-based vectors is described. Ad11 vectors are produced on PER.C6/55K cells yielding high-titer vector batches after purification. Ad11 seroprevalence proves to be significantly lower than that of Ad5, and neutralizing antibody titers against Ad11 are low. Ad11 seroprevalence among human immunodeficiency virus-positive (HIV(+)) individuals is as low as that among HIV(-) individuals, independent of the level of immune suppression. The low level of coinciding seroprevalence between Ad11 and Ad35 in addition to a lack of correlation between high neutralizing antibody titers towards either adenovirus strongly suggest that the limited humoral cross-reactive immunity between these two highly related B viruses appears not to preclude the use of both vectors in the same individual. Ad11 transduces primary cells including smooth muscle cells, synoviocytes, and dendritic cells and cardiovascular tissues with higher efficiency than Ad5. Ad11 and Ad35 appear to have a similar tropism as judged by green fluorescent protein expression levels determined by using a panel of cancer cell lines. In addition, Ad5 preimmunization did not significantly affect Ad11-mediated transduction in C57BL/6 mice. We therefore conclude that the Ad11-based vector represents a novel and useful candidate gene transfer vehicle for vaccination and gene therapy.


Assuntos
Adenovírus Humanos/genética , Terapia Genética , Vetores Genéticos/genética , Replicação Viral , Adenovírus Humanos/imunologia , Adulto , Idoso , Animais , Anticorpos Antivirais/sangue , Antígenos CD/análise , Reações Cruzadas , Vetores Genéticos/imunologia , Humanos , Proteína Cofatora de Membrana , Glicoproteínas de Membrana/análise , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Estudos Soroepidemiológicos , Tropismo , Vacinação
10.
J Virol ; 77(15): 8263-71, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12857895

RESUMO

Replication-deficient human adenovirus type 5 (Ad5) can be produced to high titers in complementing cell lines, such as PER.C6, and is widely used as a vaccine and gene therapy vector. However, preexisting immunity against Ad5 hampers consistency of gene transfer, immunological responses, and vector-mediated toxicities. We report the identification of human Ad35 as a virus with low global prevalence and the generation of an Ad35 vector plasmid system for easy insertion of heterologous genes. In addition, we have identified the minimal sequence of the Ad35-E1B region (molecular weight, 55,000 [55K]), pivotal for complementation of fully E1-lacking Ad35 vector on PER.C6 cells. After stable insertion of the 55K sequence into PER.C6 cells a cell line was obtained (PER.C6/55K) that efficiently transcomplements both Ad5 and Ad35 vectors. We further demonstrate that transduction with Ad35 is not hampered by preexisting Ad5 immunity and that Ad35 efficiently infects dendritic cells, smooth muscle cells, and synoviocytes, in contrast to Ad5.


Assuntos
Adenovírus Humanos/imunologia , Adenovírus Humanos/fisiologia , Vetores Genéticos , Replicação Viral , Proteínas E1B de Adenovirus/química , Proteínas E1B de Adenovirus/genética , Adenovírus Humanos/genética , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Células Cultivadas , Células Dendríticas/virologia , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Músculo Liso/citologia , Músculo Liso/virologia , Testes de Neutralização , Plasmídeos , Membrana Sinovial/citologia , Membrana Sinovial/virologia , Vacinação , Montagem de Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA