Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(10): 16118-16126, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37157697

RESUMO

In this letter, a sub-pm linewidth, high pulse energy and high beam quality microsecond-pulse 766.699 nm Ti:sapphire laser pumped by a frequency-doubled Nd:YAG laser is demonstrated. At an incident pump energy of 824 mJ, the maximum output energy of 132.5 mJ at 766.699 nm with linewidth of 0.66 pm and a pulse width of 100 µs is achieved at a repetition rate of 5 Hz. To the best of our knowledge, this is the highest pulse energy at 766.699 nm with pulse width of hundred micro-seconds for a Ti:sapphire laser. The beam quality factor M2 is measured to be 1.21. It could be precisely tuned from 766.623 to 766.755 nm with a tuning resolution of 0.8 pm. The wavelength stability is measured to be less than ±0.7 pm over 30 min. The sub-pm linewidth, high pulse energy and high beam quality Ti:sapphire laser at 766.699 nm can be used to create a polychromatic laser guide star together with a home-made 589 nm laser in the mesospheric sodium and potassium layer for the tip-tilt correction resulting in the near-diffraction limited imagery on a large telescope.

2.
Opt Express ; 29(24): 40397-40405, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809381

RESUMO

In this paper, we investigated the impact of the linewidth of a QCW pulsed sodium laser on the brightness performance of a generating sodium laser guide star by using the numerical simulation tool PRS. We compared the field test results with the simulation results for two TIPC's 30W class sodium guide star lasers and found the results are in good agreement which proves the tool can be used for prediction. Then, we used the tool to study the influence of D2b repumping and different linewidths from 10MHz to 1GHz on the coupling efficiency and the photon return flux. For the TIPC's QCW pulsed solid-state laser, when the on-sky power density is 1 W/m2, the coupling efficiency is 79.6 (photons/s/W/(atoms/m2)) without D2b repumping, however, the value is up to 213.3 (photons/s/W/(atoms/m2)) with 15% D2b enabled and is increased by 168% than the value without D2b; when the power density reaches 10 W/m2, the coupling efficiencies without D2b and with 15% D2b are 66.6 and 233.6 (photons/s/W/(atoms/m2)), respectively. The results show that for the QCW pulsed laser, D2b repumping is necessary. With D2b enabled, if the spectral linewidth is too wide or too narrow, the photon return flux will be adversely affected. The return flux of 60MHz is 52.5% higher than that of 1GHz, while the return flux of 300MHz is 37.8% higher than that of 10 MHz when the laser power is 100W.

3.
Opt Express ; 28(9): 13895-13906, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32403855

RESUMO

Compact high-power yellow laser is a critical part for sodium beacon adaptive optical systems. A narrow-linewidth quasi-continuous-wave (QCW) solid-state 589 nm laser with high-power and high beam quality simultaneously is investigated here, operating in hundreds-microsecond pulse duration with a tunable repetition rate of 400 to 1 kHz, which is flexible to allow the telescope to move in observing direction. The laser source is based on employing sum-frequency generation between 1319 and 1064 nm QCW Nd:YAG amplifiers. For a 100 µs pulse duration and 400 Hz repetition rate, the yellow laser provides a highest output power of 86.1 W with beam quality M2 = 1.37. The central wavelength can be precisely tuned to sodium-D2a line at 589.159 nm with a ∼440 MHz linewidth. This is the maximum power-reported for all-solid-state sodium guide star laser demonstrated to date. The result represents a key step toward solving the requirement of multi-conjugate adaptive optics for large adaptive optical telescopes.

4.
Appl Opt ; 59(2): 459-462, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-32225331

RESUMO

A void-free bonding technique was demonstrated for a large slab Nd: YAG crystal with a bonding surface dimension of ∼160mm×70mm. By using the novel fluxless oxide layer removal technology, the indium-oxide barrier problem was resolved. With the help of electrochemical-polished indium solder and a plasma-cleaned heat sink, the solderability of the indium was enhanced; in particular, the contact angle of the solder was improved from 51° to 31°. With the largest-bonding-size slab, a single-slab laser created a maximum output power of 7.3 kW under an absorbed pump power of 12.8 kW, corresponding to an optical to optical efficiency of 57% and a slope conversion of 67.8%. By detecting the wavefront of the interferometer before and after bonding, the RMS of wavefront was 0.192λ and 0.434λ (λ=633nm), respectively. To the best of our knowledge, this is the largest void-free bonding size for a laser slab and the highest output power achieved from a single-slab crystal laser oscillator.

5.
Opt Lett ; 45(7): 1818-1821, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32236007

RESUMO

A 100 W level kilohertz repetition-rate microsecond (µs)-pulse all-solid-state sodium beacon laser at 589 nm is demonstrated for the first time, to the best of our knowledge, via combining two independent µs-pulsed lasers. Each beamlet is generated by the sum-frequency mixing of pulsed 1064 and 1319 nm lasers in a lithium triborate (LBO) crystal, which operate at 500 Hz pulse repetition frequency with 61 W $p$p-polarized and 53 W $s$s-polarized output, respectively. An incoherent sequence combining technology of polarized laser beams is employed to add the two beamlets. The average power of the combined beam is up to 107.5 W with a combining efficiency of 94.3%. The combined beam has a 1 kHz repetition rate with ${\sim}{120}\;\unicode{x00B5} {\rm s}$∼120µs pulse duration and beam quality ${M^2} = {1.41}$M2=1.41. The central wavelength with a linewidth of ${\sim}{0.3}\;{\rm GHz}$∼0.3GHz is locked to a sodium ${{\rm D}_{2a}}$D2a absorption line. To the best of our knowledge, this is a record-high power operating at kilohertz for µs-pulsed solid-state sodium beacon lasers.

6.
Opt Express ; 27(9): 12255-12263, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31052769

RESUMO

The polychromatic laser guide star (PLGS) is one of the solutions proposed to measure the differential atmospheric tip-tilt. A watts-level microsecond pulse all solid state laser source with two wavelengths at 589 and 819.7 nm are developed to perform a proof-of-concept on-sky test for what is believed to be the first time. By sum-frequency of 1319 and 1064 nm, a 44 W maximum average output power at 589.159 nm is generated with the pulse width of ~90 µs at 500 Hz, the linewidth of 0.46 pm, and the beam quality of M2 = 1.50. Meanwhile, a 2.4 W average output power is achieved operating at 819.710 nm with the pulse width of ~25 µs at 500 Hz, the linewidth of 0.8 pm, and beam quality factor of M2 = 1.20, which is end-pumped by a frequency-doubled 1064 nm Nd:YAG laser. Moreover, double resonant fluorescence in sodium cell with two step excitation of sodium atom from 3S1/2 to 3D5/2 via 3P3/2 level is observed clearly by tuning the wavelength of 589 and 819.7 nm beams. In the proof-of-principle experiment, it is preliminarily verified that this laser system is expected to be applied to the sky experiment.

7.
Opt Lett ; 41(8): 1732-5, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27082331

RESUMO

A 65 W quasi-continuous-wave microsecond-pulse solid-state sodium beacon laser tuned to the sodium D2a line has been developed with a linewidth of 0.3 GHz, beam quality of M2=1.38, and pulse width of 120 µs at a repetition rate of 500 Hz by sum-frequency mixing 1319 and 1064 nm diode-pumped Nd:YAG master-oscillator power-amplifier systems. The laser wavelength stability is less than ±0.15 GHz through feedback controlling. The laser spiking due to relaxation oscillations is suppressed by inserting frequency doublers in both 1319 and 1064 nm oscillators. Sodium D2b re-pumping is accomplished by tuning the frequency of the electro-optic modulator with the right D2a-D2b offset. A bright sodium laser guide star with a photon return of 1820 photons/cm2/s was achieved with the laser system when a 32 W circular polarized beam was projected to the sky during our field test at the Xinglong Observatory.

8.
Appl Opt ; 54(28): 8425-8, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26479619

RESUMO

A low-timing-jitter high-power semiconductor saturable absorber mirror mode-locked picosecond (ps) 1063 nm Nd:GdVO4 master oscillator power amplifier is presented. Using a single-pass Nd:GdVO4 amplifier, an amplified laser with 21.5 W output power and 8.3 ps pulsewidth was achieved at 250 MHz repetition rate. Employing a servo control, an average RMS timing jitter of ∼222 fs was realized. This laser can be used as a drive laser for photocathode injectors in free-electron lasers.

9.
Appl Opt ; 51(10): C27-31, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22505107

RESUMO

We demonstrated a high average power, narrow-linewidth, quasi-CW diode-pumped Nd:YAG 1064 nm laser with near-diffraction-limited beam quality. A symmetrical three-mirror ring cavity with unidirectional operation elements and an etalon was employed to realize the narrow-linewidth laser output. Two highly efficient laser modules and a 90° quartz rotator for birefringence compensation were used for the high output power. The maximum average output power of 62.5 W with the beam quality factor M(2) of 1.15 was achieved under a pump power of 216 W at a repetition rate of 500 Hz, corresponding to the optical-to-optical conversion efficiency of 28.9%. The linewidth of the laser at the maximum output power was measured to be less than 0.2 GHz.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA