Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomaterials ; 309: 122603, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38713972

RESUMO

Sympathetic nerves play a pivotal role in promoting tumor growth through crosstalk with tumor and stromal cells. Chemotherapy exacerbates the infiltration of sympathetic nerves into tumors, thereby providing a rationale for inhibiting sympathetic innervation to enhance chemotherapy. Here, we discovered that doxorubicin increases the density and activity of sympathetic nerves in breast cancer mainly by upregulating the expression of nerve growth factors (NGFs) in cancer cells. To address this, we developed a combination therapy by co-encapsulating small interfering RNA (siRNA) and doxorubicin within breast cancer-targeted poly (lactic-co-glycolic acid) (PLGA) nanoparticles, aiming to suppress NGF expression post-chemotherapy. Incorporating NGF blockade into the nanoplatform for chemotherapy effectively mitigated the chemotherapy-induced proliferation of sympathetic nerves. This not only bolstered the tumoricidal activity of chemotherapy, but also amplified its stimulatory impact on the antitumor immune response by increasing the infiltration of immunostimulatory cells into tumors while concurrently reducing the frequency of immunosuppressive cells. Consequently, the combined nanodrug approach, when coupled with anti-PD-L1 treatment, exhibited a remarkable suppression of primary and deeply metastatic tumors with minimal systematic toxicity. Importantly, the nanoplatform relieved chemotherapy-induced peripheral neuropathic pain (CIPNP) by diminishing the expression of pain mediator NGFs. In summary, this research underscores the significant potential of NGF knockdown in enhancing immunochemotherapy outcomes and presents a nanoplatform for the highly efficient and low-toxicity treatment of breast cancer.


Assuntos
Doxorrubicina , Imunoterapia , Nanopartículas , Neuralgia , Neuralgia/induzido quimicamente , Animais , Doxorrubicina/farmacologia , Feminino , Nanopartículas/química , Linhagem Celular Tumoral , Humanos , Imunoterapia/métodos , Camundongos , RNA Interferente Pequeno , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Fator de Crescimento Neural/metabolismo , Camundongos Endogâmicos BALB C , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Antineoplásicos/farmacologia
2.
Cancer Manag Res ; 14: 2749-2761, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36133740

RESUMO

Purpose: Oncolytic virus therapy has gradually become an integral approach in cancer treatment. We explored the therapeutic effects of the combination of a dual cancer-selective anti-tumor recombinant adenovirus (Ad-Apoptin-hTERTp-E1a) and cyclophosphamide on breast cancer cells. Methods: The inhibition of MCF-7 and MDA-MB-231 breast cancer cells by Ad-Apoptin-hTERTp-E1a (Ad-VT), cyclophosphamide, and Ad-VT + Cyclophosphamide was investigated using the CCK-8 assay. The combination index (CI) was calculated using CalcuSyn software to determine the best combination based on the inhibition rates of the different treatment combinations. The CCK-8 assay and crystal violet staining were used to detect the cytotoxicity of the combined Ad-VT and cyclophosphamide in breast cancer cells and breast epithelial cells. Subsequently, Hoechst staining, annexin V flow cytometry, and JC-1 staining were used to analyze the inhibitory pathway of Ad-VT plus cyclophosphamide on breast cancer cells. Cell migration and invasion of breast cancer cells were assessed using the cell-scratch and Transwell assays. The anti-tumor effects of different treatment groups in a tumor-bearing nude mouse model also were analyzed. Results: The treatment combination of Ad-VT (40 MOI) and cyclophosphamide (400 µM) significantly inhibited MCF-7 and MDA-MB-231 cells and reduced the toxicity of cyclophosphamide in normal cells. Ad-VT primarily induced breast cancer cell apoptosis through the endogenous apoptotic pathway. Apoptosis was significantly increased after treatment with Ad-VT plus cyclophosphamide. The combination significantly inhibited the migration and invasion of MCF-7 and MDA-MB-231 cells. The in vivo experiments demonstrated that exposure to Ad-VT plus cyclophosphamide significantly inhibited tumor growth and extended the survival time of the nude mice. Conclusion: Ad-VT plus cyclophosphamide reduced toxicity and exhibited increased efficacy in treating breast cancer cells.

3.
Front Bioeng Biotechnol ; 10: 945472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032706

RESUMO

There is an urgent need to identify chemotherapeutic agents with improved efficacy and safety against triple-negative breast cancer (TNBC). Ginsenosides can reportedly induce tumor cell death, invasion, and metastasis; however, poor water solubility, low oral absorption rate, and rapid blood clearance limit their clinical application. Utilizing the amphiphilic property of ginsenosides as building blocks of biomaterials, we fabricated a carrier-free nanodrug composed of ginsenosides Rg3 and Rb1 using a nano-reprecipitation method without any additional carriers. After characterizing and demonstrating their uniform morphology and pH-sensitive drug release properties, we observed that Rg3-Rb1 nanoparticles (NPs) exhibited stronger antitumor and anti-invasive effects on TNBCs in vitro than those mediated by free ginsenosides. Consequently, Rg3-Rb1 NPs afforded superior inhibition of tumor growth and reduction of pulmonary metastasis than the Rg3 and Rb1 mixture, with no obvious systematic toxicity in vivo. Collectively, our results provide a proof-of-concept that self-assembled engineered ginsenoside nanodrugs may be efficient and safe for TNBC therapy.

4.
Int J Nanomedicine ; 17: 989-1002, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280333

RESUMO

Background: Sonodynamic therapy (SDT) has rapidly advanced as a promising alternative to conventional photodynamic therapy owing to its preferable therapeutic depth. However, single-modal SDT exhibits limited efficacy due to the long-term hypoxia in tumors. Method and Results: To address these issues, we proposed a synergistic SDT strategy that integrates mitochondrial targeting with nitric oxide (NO) gas therapy by using multifunctional nanoplatforms. The nanoplatform, which was named as T-mTNPs@L-Arg, was composed of mesoporous titanium dioxide loaded with the NO donor precursor L-arginine (L-Arg) and modified with triphenyl phosphonium (TPP), a mitochondria-targeting ligand. Therefore, T-mTNPs@L-Arg could efficiently concentrate into mitochondria and release NO gas as well as generate reactive oxygen species (ROS) with ultrasound stimulus. Importantly, the released NO gas exerted multiple synergies with SDT, including inducing NO poisoning, generating more lethal reactive nitrogen species (RNS) by reaction with ROS, and alleviating hypoxia through NO-mediated mitochondrial respiration inhibition. On account of the synergistic effects, T-mTNPs@L-Arg showed an outstanding SDT efficacy and a reduced side effect. Conclusion: This work designed a nanoplatform to integrate mitochondria targeting, SDT and NO gas therapy, providing a new strategy for highly efficient breast cancer therapy.


Assuntos
Neoplasias , Óxido Nítrico , Humanos , Mitocôndrias/patologia , Neoplasias/tratamento farmacológico , Titânio/farmacologia
5.
Front Bioeng Biotechnol ; 10: 1098986, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686245

RESUMO

Although radiotherapy is one of the most common treatments for triple-negative breast cancer (TNBC), it frequently has unsatisfactory therapeutic outcomes due to the radiation resistance of tumor tissues. Therefore, a synergistic strategy is urgently needed to increase therapeutic responses and prolong patient survival. Herein, we constructed gold nanocages (GNCs) loaded with a hyperpyrexia-sensitive nitric oxide (NO) donor (thiolate cupferron) to integrate extrinsic radiosensitization, local photothermal therapy, and near-infrared-activated NO gas therapy. The resulting nanoplatform (GNCs@NO) showed a high photothermal conversion efficiency, which induced the death of cancer cells and facilitated rapid NO release in tumor tissues. The radiosensitizing efficacy of GNCs@NO was further demonstrated in vitro and in vivo. Importantly, the released NO reacted with the reactive oxide species induced by radiotherapy to produce more toxic reactive nitrogen species, exerting a synergistic effect to improve anticancer efficacy. Thus, GNCs@NO demonstrated excellent effects as a combination therapy with few adverse effects. Our work proposes a promising nanoplatform for the radio/photothermal/gas treatment of TNBC.

6.
Front Bioeng Biotechnol ; 9: 747637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34504835

RESUMO

The clinical outcomes of triple-negative breast cancer (TNBC) chemotherapy are unsatisfactory. Water solubility and biosafety of chemo drugs are also major barriers for achieving satisfactory treatment effect. In this study, we have reported a combinational strategy by self-assembly engineering nanodrugs PC NDs, which were composed of paclitaxel (PTX) and curcumin (Cur), for effective and safe TNBC chemotherapy. PC NDs were prepared through reprecipitation method without using any additional carriers. The PC NDs were preferentially taken up by TNBC cells and we also observed pH-related drug release. Compared with free PTX and simple PTX/Cur mixture, PC NDs have shown higher therapeutic efficiency and better prognosis while the metastasis rate was significantly lower than that of either PTX or PTX/Cur mix group. Therefore, the self-assembly engineered PC NDs might be a promising nanodrugs for efficient and safe TNBC chemotherapy.

7.
Front Bioeng Biotechnol ; 9: 763486, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35350110

RESUMO

Protein therapeutics have been considered a promising strategy for cancer treatment due to their highly specific bioactivity and few side effects. Unfortunately, the low physiological stability and poor membrane permeability of most protein drugs greatly limit their clinical application. Furthermore, single-modality protein therapeutics show insufficient efficacy. To address these issues, Janus magnetic mesoporous silica nanoparticles (Janus MSNNPs) were developed to preload ribonuclease A (RNaseA) to simultaneously realize the magnetically enhanced delivery of protein drugs and magnetic hyperthermia-enhanced protein therapy. Janus MSNNPs showed a high RNaseA loading ability and pH-responsive drug release behavior. Furthermore, an external magnetic field could remarkably enhance the therapeutic effect of RNaseA-loaded Janus MSNNPs due to the improved intracellular internalization of RNaseA. Importantly, Janus MSNNPs possessed an outstanding magnetic hyperthermia conversion efficiency, which could generate hyperthermia under an alternating magnetic field, effectively supplementing protein therapy by a combined effect. In vitro and in vivo experiments confirmed the high anticancer outcome and low side effects of this intriguing strategy for breast cancer based on Janus MSNNPs. Hence, Janus MSNNPs might be an effective and safe nanoplatform for magnetically combined protein therapy.

8.
Cancer Cell ; 28(3): 296-306, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26321222

RESUMO

Cytokines play a pivotal role in regulating tumor immunogenicity and antitumor immunity. IL-36γ is important for the IL-23/IL-17-dominated inflammation and anti-BCG Th1 immune responses. However, the impact of IL-36γ on tumor immunity is unknown. Here we found that IL-36γ stimulated CD8(+) T cells, NK cells, and γδ T cells synergistically with TCR signaling and/or IL-12. Importantly, IL-36γ exerted profound antitumor effects in vivo and transformed the tumor microenvironment in favor of tumor eradication. Furthermore, IL-36γ strongly increased the efficacy of tumor vaccination. Moreover, IL-36γ expression inversely correlated with the progression of human melanoma and lung cancer. Our study establishes a role of IL-36γ in promoting antitumor immune responses and suggests its potential clinical translation into cancer immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interleucina-1/imunologia , Células Matadoras Naturais/imunologia , Microambiente Tumoral/imunologia , Animais , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Humanos , Imunoterapia/métodos , Interleucina-12/imunologia , Neoplasias Pulmonares/imunologia , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA