Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(6): 2620-2627, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38217497

RESUMO

The CRISPR/Cas12a system is a revolutionary genome editing technique that is widely employed in biosensing and molecular diagnostics. However, there are few reports on precisely managing the trans-cleavage activity of Cas12a by simple modification since the traditional methods to manage Cas12a often require difficult and rigorous regulation of core components. Hence, we developed a novel CRISPR/Cas12a regulatory mechanism, named DNA Robots for Enzyme Activity Management (DREAM), by introducing two simple DNA robots, apurinic/apyrimidinic site (AP site) or nick on target activator. First, we revealed the mechanism of how the DREAM strategy precisely regulated Cas12a through different binding affinities. Second, the DREAM strategy was found to improve the selectivity of Cas12a for identifying base mismatch. Third, a modular biosensor for base excision repair enzymes based on the DREAM strategy was developed by utilizing diversified generation ways of DNA robots, and a multi-signal output platform such as fluorescence, colorimetry, and visual lateral flow strip was constructed. Furthermore, we extended logic sensing circuits to overcome the barrier that Cas12a could not detect simultaneously in a single tube. Overall, the DREAM strategy not only provided new prospects for programmable Cas12a biosensing systems but also enabled portable, specific, and humanized detection with great potential for molecular diagnostics.


Assuntos
Técnicas Biossensoriais , Robótica , Sistemas CRISPR-Cas/genética , Colorimetria , DNA/genética , Reparo por Excisão
2.
Small ; 20(25): e2310728, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38229573

RESUMO

DNA nanostructures with diverse biological functions have made significant advancements in biomedical applications. However, a universal strategy for the efficient production of DNA nanostructures is still lacking. In this work, a facile and mild method is presented for self-assembling polyethylenimine-modified carbon dots (PEI-CDs) and DNA into nanospheres called CANs at room temperature. This makes CANs universally applicable to multiple biological applications involving various types of DNA. Due to the ultra-small size and strong cationic charge of PEI-CDs, CANs exhibit a dense structure with high loading capacity for encapsulated DNA while providing excellent stability by protecting DNA from enzymatic hydrolysis. Additionally, Mg2+ is incorporated into CANs to form Mg@CANs which enriches the performance of CANs and enables subsequent biological imaging applications by providing exogenous Mg2+. Especially, a DNAzyme logic gate system that contains AND and OR Mg@CANs is constructed and successfully delivered to tumor cells in vitro and in vivo. They can be specifically activated by endogenic human apurinic/apyrimidinic endonuclease 1 and recognize the expression levels of miRNA-21 and miRNA-155 at tumor sites by logic biocomputing. A versatile pattern for delivery of diverse DNA and flexible logic circuits for multiple miRNAs imaging are developed.


Assuntos
Carbono , DNA , MicroRNAs , Nanosferas , Polietilenoimina , Pontos Quânticos , Carbono/química , Humanos , Nanosferas/química , DNA/química , Pontos Quânticos/química , Polietilenoimina/química , DNA Catalítico/química , Animais , Neoplasias/diagnóstico por imagem , Lógica , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA