Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 69(9): 1332-1341, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38485623

RESUMO

A troubling feedback loop, where drier soil contributes to hotter climates, has been widely recognized. This study, drawing on climate model simulations, reveals that maintaining current global soil moisture levels could significantly alleviate 32.9% of land warming under low-emission scenarios. This action could also postpone reaching critical warming thresholds of 1.5 °C and 2.0 °C by at least a decade. Crucially, preserving soil moisture at current levels could prevent noticeable climate change impacts across 42% of the Earth's land, a stark deviation from projections suggesting widespread impacts before the 2060s. To combat soil drying, afforestation in mid-to-low latitude regions within the next three decades is proposed as an effective strategy to increase surface water availability. This underscores the substantial potential of nature-based solutions for managing soil moisture, benefiting both climate change mitigation and ecological enhancement.

2.
Nat Commun ; 14(1): 4908, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37582806

RESUMO

Soil moisture-atmosphere coupling (SA) amplifies greenhouse gas-driven global warming via changes in surface heat balance. The Scenario Model Intercomparison Project projects an acceleration in SA-driven warming due to the 'warmer climate - drier soil' feedback, which continuously warms the globe and thereby exerts an acceleration effect on global warming. The projection shows that SA-driven warming exceeds 0.5 °C over extratropical landmasses by the end of the 21st Century. The likelihood of extreme high temperatures will additionally increase by about 10% over the entire globe (excluding Antarctica) and more than 30% over large parts of North America and Europe under the high-emission scenario. This demonstrates the high sensitivity of SA to climate change, in which SA can exceed the natural range of climate variability and play a non-linear warming component role on the globe.

3.
Zhongguo Zhong Yao Za Zhi ; 42(20): 3873-3879, 2017 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-29243420

RESUMO

Chinese medicinal formulae are the important means of clinical treatment in traditional Chinese medicine. It is urgent to use modern advanced scientific and technological means to reveal the complicated mechanism of Chinese medicinal formulae because they have the function characteristics of multiple components, multiple targets and integrated regulation. The systematic and comprehensive research model of proteomic is in line with the function characteristics of Chinese medicinal formulae, and proteomic has been widely used in the study of pharmacological mechanism of Chinese medicinal formulae. The recent applications of proteomic in pharmacological study of Chinese medicinal formulae in anti-cardiovascular and cerebrovascular diseases, anti-liver disease, antidiabetic, anticancer, anti-rheumatoid arthritis and other diseases were reviewed in this paper, and then the future development direction of proteomic in pharmacological study of Chinese medicinal formulae was put forward. This review is to provide the ideas and method for proteomic research on function mechanism of Chinese medicinal formulae.


Assuntos
Medicamentos de Ervas Chinesas/química , Proteômica , Humanos , Medicina Tradicional Chinesa
4.
Zhongguo Zhong Yao Za Zhi ; 42(20): 3860-3865, 2017 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-29243418

RESUMO

Total glucosides of peony (TGP), containing the effective components of paeoniflorin (Pae), albiflorin (Alb) and so on, are effective parts of Radix Paeoniae Alba. And it possesses extensive pharmacological actions, one of which is hepatoprotective effect. In recent years, abundant of pharmacokinetics and pharmacodynamics research of TGP in hepatoprotective effects have been performed. However, the relative medicine of TGP in hepatoprotective effect has not been developed for clinical application. In order to provide reference for the development and rational clinical application of TGP, the research progresses of pharmacokinetics and pharmacodynamics of TGP in hepatoprotective effect were summarized in this paper. Pharmacokinetics research has clarified the process of absorption, distribution, metabolism and excretion of TGP in vivo, and liver injury disease can significantly influence its metabolic processes. Pharmacodynamics studies suggested that TGP can protect against acute liver injury, non-alcoholic fatty liver diseases (NAFLD), chronic liver fibrosis and liver cancer. However, the action mechanism and in vivo process about hepatoprotective effects of TGP have not been clearly revealed. How liver injury influences the metabolism of TGP and its integrated regulation through multiple targets need to be further studied. The combined pharmacokinetics and pharmacodynamics studies should be performed in favour of medicine development and clinical application of TGP in hepatoprotective effects.


Assuntos
Glucosídeos/farmacologia , Glucosídeos/farmacocinética , Hepatopatias/tratamento farmacológico , Paeonia/química , Medicamentos de Ervas Chinesas/farmacocinética , Medicamentos de Ervas Chinesas/farmacologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA