Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Artif Organs ; 44(12): 998-1012, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33863248

RESUMO

OBJECTIVE: The aim of this study was to optimize a decellularization protocol in the trachea of Sus scrofa domestica (pig) as well as to study the effects of long-term cryopreservation on the extracellular matrix of decellularized tracheas. METHODS: Porcine tracheas were decellularized using Triton X-100, SDC, and SDS alone or in combination. The effect of these detergents on the extracellular matrix characteristics of decellularized porcine tracheas was evaluated at the histological, biomechanical, and biocompatibility level. Morphometric approaches were used to estimate the effect of detergents on the collagen and elastic fibers content as well as on the removal of chondrocytes from decellularized organs. Moreover, the long-term structural, ultrastructural, and biomechanical effect of cryopreservation of decellularized tracheas were also estimated. RESULTS: Two percent SDS was the most effective detergent tested concerning cell removal and preservation of the histological and biomechanical properties of the tracheal wall. However, long-term cryopreservation had no an appreciable effect on the structure, ultrastructure, and biomechanics of decellularized tracheal rings. CONCLUSION: The results presented here reinforce the use of SDS as a valuable decellularizing agent for porcine tracheas. Furthermore, a cryogenic preservation protocol is described, which has minimal impact on the histological and biomechanical properties of decellularized porcine tracheas.


Assuntos
Alicerces Teciduais , Traqueia , Criopreservação , Matriz Extracelular , Octoxinol , Suínos , Engenharia Tecidual
2.
Allergy Rhinol (Providence) ; 12: 2152656721989288, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628615

RESUMO

BACKGROUND: Primary ciliary dyskinesia (PCD) is characterised by an imbalance in mucociliary clearance leading to chronic respiratory infections. Cilia length is considered to be a contributing factor in cilia movement. Recently, IFT46 protein has been related to cilia length. Therefore, this work aims to study IFT46 expression in a PCD patients cohort and analyse its relationship with cilia length and function, as it was not previously described. MATERIALS AND METHODS: The expression of one intraflagellar transport (IFT46) and two regulating ciliary architecture (FOXJ1 and DNAI2) genes, as well as cilia length of 27 PCD patients, were measured. PCD patients were diagnosed based on clinical data, and cilia function and ultrastructure. Gene expression was estimated by real-time RT-PCR and cilia length by electron microscopy in nasal epithelium biopsies.Results and conclusions: While IFT46 expression was only diminished in patients with short cilia, FOXJ1, and DNAI2 expression were reduced in all PCD patient groups compared to controls levels. Among the PCD patients, cilia were short in 44% (5.9 ± 0.70 µm); nine of these (33% from the total) patients' cilia also had an abnormal ultrastructure. Cilia length was normal in 33% of patients (6.4 ± 0.39 µm), and only three patients' biopsies indicated decreased expression of dynein.

3.
Stem Cells Int ; 2017: 8309256, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28951745

RESUMO

Osteoarthritis is an inflammatory disease in which all joint-related elements, articular cartilage in particular, are affected. The poor regeneration capacity of this tissue together with the lack of pharmacological treatment has led to the development of regenerative medicine methodologies including microfracture and autologous chondrocyte implantation (ACI). The effectiveness of ACI has been shown in vitro and in vivo, but the use of other cell types, including bone marrow and adipose-derived mesenchymal stem cells, is necessary because of the poor proliferation rate of isolated articular chondrocytes. In this investigation, we assessed the chondrogenic ability of human dental pulp stem cells (hDPSCs) to regenerate cartilage in vitro and in vivo. hDPSCs and primary isolated rabbit chondrocytes were cultured in chondrogenic culture medium and found to express collagen II and aggrecan. Both cell types were cultured in 3% alginate hydrogels and implanted in a rabbit model of cartilage damage. Three months after surgery, significant cartilage regeneration was observed, particularly in the animals implanted with hDPSCs. Although the results presented here are preliminary, they suggest that hDPSCs may be useful for regeneration of articular cartilage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA