Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420553

RESUMO

Maritime obstacle detection is critical for safe navigation of autonomous surface vehicles (ASVs). While the accuracy of image-based detection methods has advanced substantially, their computational and memory requirements prohibit deployment on embedded devices. In this paper, we analyze the current best-performing maritime obstacle detection network, WaSR. Based on the analysis, we then propose replacements for the most computationally intensive stages and propose its embedded-compute-ready variant, eWaSR. In particular, the new design follows the most recent advancements of transformer-based lightweight networks. eWaSR achieves comparable detection results to state-of-the-art WaSR with only a 0.52% F1 score performance drop and outperforms other state-of-the-art embedded-ready architectures by over 9.74% in F1 score. On a standard GPU, eWaSR runs 10× faster than the original WaSR (115 FPS vs. 11 FPS). Tests on a real embedded sensor OAK-D show that, while WaSR cannot run due to memory restrictions, eWaSR runs comfortably at 5.5 FPS. This makes eWaSR the first practical embedded-compute-ready maritime obstacle detection network. The source code and trained eWaSR models are publicly available.


Assuntos
Veículos Autônomos , Fontes de Energia Elétrica , Software
2.
Sensors (Basel) ; 22(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36501841

RESUMO

Robust maritime obstacle detection is critical for safe navigation of autonomous boats and timely collision avoidance. The current state-of-the-art is based on deep segmentation networks trained on large datasets. However, per-pixel ground truth labeling of such datasets is labor-intensive and expensive. We propose a new scaffolding learning regime (SLR) that leverages weak annotations consisting of water edges, the horizon location, and obstacle bounding boxes to train segmentation-based obstacle detection networks, thereby reducing the required ground truth labeling effort by a factor of twenty. SLR trains an initial model from weak annotations and then alternates between re-estimating the segmentation pseudo-labels and improving the network parameters. Experiments show that maritime obstacle segmentation networks trained using SLR on weak annotations not only match but outperform the same networks trained with dense ground truth labels, which is a remarkable result. In addition to the increased accuracy, SLR also increases domain generalization and can be used for domain adaptation with a low manual annotation load. The SLR code and pre-trained models are freely available online.


Assuntos
Trabalho de Parto , Aprendizagem , Gravidez , Feminino , Humanos , Aclimatação , Água , Processamento de Imagem Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA