Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Commun ; 15(1): 1553, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378768

RESUMO

Ever-evolving SARS-CoV-2 variants of concern (VOCs) have diminished the effectiveness of therapeutic antibodies and vaccines. Developing a coronavirus vaccine that offers a greater breadth of protection against current and future VOCs would eliminate the need to reformulate COVID-19 vaccines. Here, we rationally engineer the sequence-conserved S2 subunit of the SARS-CoV-2 spike protein and characterize the resulting S2-only antigens. Structural studies demonstrate that the introduction of interprotomer disulfide bonds can lock S2 in prefusion trimers, although the apex samples a continuum of conformations between open and closed states. Immunization with prefusion-stabilized S2 constructs elicits broadly neutralizing responses against several sarbecoviruses and protects female BALB/c mice from mouse-adapted SARS-CoV-2 lethal challenge and partially protects female BALB/c mice from mouse-adapted SARS-CoV lethal challenge. These engineering and immunogenicity results should inform the development of next-generation pan-coronavirus therapeutics and vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Feminino , Animais , Humanos , Camundongos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Antígenos Virais/genética , Camundongos Endogâmicos BALB C , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
2.
Virus Res ; 341: 199319, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224840

RESUMO

Following the emergence of B.1.1.529 Omicron, the SARS-CoV-2 virus evolved into a significant number of sublineage variants that possessed numerous mutations throughout the genome, but particularly within the spike glycoprotein (S) gene. For example, the BQ.1.1 and the XBB.1 and XBB.1.5 subvariants contained 34 and 41 mutations in S, respectively. However, these variants elicited largely replication only or mild disease phenotypes in mice. To better model pathogenic outcomes and measure countermeasure performance, we developed mouse adapted versions (BQ.1.1 MA; XBB.1 MA; XBB.1.5 MA) that reflect more pathogenic acute phase pulmonary disease symptoms of SARS-CoV-2, as well as derivative strains expressing nano-luciferase (nLuc) in place of ORF7 (BQ.1.1 nLuc; XBB.1 nLuc; XBB.1.5 nLuc). Amongst the mouse adapted (MA) viruses, a wide range of disease outcomes were observed including mortality, weight loss, lung dysfunction, and tissue viral loads in the lung and nasal turbinates. Intriguingly, XBB.1 MA and XBB.1.5 MA strains, which contained identical mutations throughout except at position F486S/P in S, exhibited divergent disease outcomes in mice (Ao et al., 2023). XBB.1.5 MA infection was associated with significant weight loss and ∼45 % mortality across two independent studies, while XBB.1 MA infected animals suffered from mild weight loss and only 10 % mortality across the same two independent studies. Additionally, the development and use of nanoluciferase expressing strains provided moderate throughput for live virus neutralization assays. The availability of small animal models for the assessment of Omicron VOC disease potential will enable refined capacity to evaluate the efficacy of on market and pre-clinical therapeutics and interventions.


Assuntos
SARS-CoV-2 , Redução de Peso , Animais , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Fenótipo
3.
bioRxiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37425890

RESUMO

Despite the wide availability of several safe and effective vaccines that can prevent severe COVID-19 disease, the emergence of SARS-CoV-2 variants of concern (VOC) that can partially evade vaccine immunity remains a global health concern. In addition, the emergence of highly mutated and neutralization-resistant SARS-CoV-2 VOCs such as BA.1 and BA.5 that can partially or fully evade (1) many therapeutic monoclonal antibodies in clinical use underlines the need for additional effective treatment strategies. Here, we characterize the antiviral activity of GS-5245, Obeldesivir (ODV), an oral prodrug of the parent nucleoside GS-441524, which targets the highly conserved RNA-dependent viral RNA polymerase (RdRp). Importantly, we show that GS-5245 is broadly potent in vitro against alphacoronavirus HCoV-NL63, severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-related Bat-CoV RsSHC014, Middle East Respiratory Syndrome coronavirus (MERS-CoV), SARS-CoV-2 WA/1, and the highly transmissible SARS-CoV-2 BA.1 Omicron variant in vitro and highly effective as antiviral therapy in mouse models of SARS-CoV, SARS-CoV-2 (WA/1), MERS-CoV and Bat-CoV RsSHC014 pathogenesis. In all these models of divergent coronaviruses, we observed protection and/or significant reduction of disease metrics such as weight loss, lung viral replication, acute lung injury, and degradation in pulmonary function in GS-5245-treated mice compared to vehicle controls. Finally, we demonstrate that GS-5245 in combination with the main protease (Mpro) inhibitor nirmatrelvir had increased efficacy in vivo against SARS-CoV-2 compared to each single agent. Altogether, our data supports the continuing clinical evaluation of GS-5245 in humans infected with COVID-19, including as part of a combination antiviral therapy, especially in populations with the most urgent need for more efficacious and durable interventions.

4.
Sci Transl Med ; 14(664): eabo5070, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-35857635

RESUMO

A subset of individuals who recover from coronavirus disease 2019 (COVID-19) develop post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal tissue samples. The mouse-adapted SARS-CoV-2 strain MA10 produces an acute respiratory distress syndrome in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute to clinical recovery phases. At 15 to 120 days after virus clearance, pulmonary histologic findings included subpleural lesions composed of collagen, proliferative fibroblasts, and chronic inflammation, including tertiary lymphoid structures. Longitudinal spatial transcriptional profiling identified global reparative and fibrotic pathways dysregulated in diseased regions, similar to human COVID-19. Populations of alveolar intermediate cells, coupled with focal up-regulation of profibrotic markers, were identified in persistently diseased regions. Early intervention with antiviral EIDD-2801 reduced chronic disease, and early antifibrotic agent (nintedanib) intervention modified early disease severity. This murine model provides opportunities to identify pathways associated with persistent SARS-CoV-2 pulmonary disease and test countermeasures to ameliorate PASC.


Assuntos
COVID-19 , Animais , Antivirais , COVID-19/complicações , Fibrose , Humanos , Pulmão/patologia , Camundongos , SARS-CoV-2
5.
mBio ; 13(4): e0145422, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35862771

RESUMO

Infectious diseases have shaped the human population genetic structure, and genetic variation influences the susceptibility to many viral diseases. However, a variety of challenges have made the implementation of traditional human Genome-wide Association Studies (GWAS) approaches to study these infectious outcomes challenging. In contrast, mouse models of infectious diseases provide an experimental control and precision, which facilitates analyses and mechanistic studies of the role of genetic variation on infection. Here we use a genetic mapping cross between two distinct Collaborative Cross mouse strains with respect to severe acute respiratory syndrome coronavirus (SARS-CoV) disease outcomes. We find several loci control differential disease outcome for a variety of traits in the context of SARS-CoV infection. Importantly, we identify a locus on mouse chromosome 9 that shows conserved synteny with a human GWAS locus for SARS-CoV-2 severe disease. We follow-up and confirm a role for this locus, and identify two candidate genes, CCR9 and CXCR6, that both play a key role in regulating the severity of SARS-CoV, SARS-CoV-2, and a distantly related bat sarbecovirus disease outcomes. As such we provide a template for using experimental mouse crosses to identify and characterize multitrait loci that regulate pathogenic infectious outcomes across species. IMPORTANCE Host genetic variation is an important determinant that predicts disease outcomes following infection. In the setting of highly pathogenic coronavirus infections genetic determinants underlying host susceptibility and mortality remain unclear. To elucidate the role of host genetic variation on sarbecovirus pathogenesis and disease outcomes, we utilized the Collaborative Cross (CC) mouse genetic reference population as a model to identify susceptibility alleles to SARS-CoV and SARS-CoV-2 infections. Our findings reveal that a multitrait loci found in chromosome 9 is an important regulator of sarbecovirus pathogenesis in mice. Within this locus, we identified and validated CCR9 and CXCR6 as important regulators of host disease outcomes. Specifically, both CCR9 and CXCR6 are protective against severe SARS-CoV, SARS-CoV-2, and SARS-related HKU3 virus disease in mice. This chromosome 9 multitrait locus may be important to help identify genes that regulate coronavirus disease outcomes in humans.


Assuntos
COVID-19 , Doenças Transmissíveis , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Viroses , Animais , Camundongos de Cruzamento Colaborativo , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , SARS-CoV-2/genética
6.
bioRxiv ; 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35677067

RESUMO

Infectious diseases have shaped the human population genetic structure, and genetic variation influences the susceptibility to many viral diseases. However, a variety of challenges have made the implementation of traditional human Genome-wide Association Studies (GWAS) approaches to study these infectious outcomes challenging. In contrast, mouse models of infectious diseases provide an experimental control and precision, which facilitates analyses and mechanistic studies of the role of genetic variation on infection. Here we use a genetic mapping cross between two distinct Collaborative Cross mouse strains with respect to SARS-CoV disease outcomes. We find several loci control differential disease outcome for a variety of traits in the context of SARS-CoV infection. Importantly, we identify a locus on mouse Chromosome 9 that shows conserved synteny with a human GWAS locus for SARS-CoV-2 severe disease. We follow-up and confirm a role for this locus, and identify two candidate genes, CCR9 and CXCR6 that both play a key role in regulating the severity of SARS-CoV, SARS-CoV-2 and a distantly related bat sarbecovirus disease outcomes. As such we provide a template for using experimental mouse crosses to identify and characterize multitrait loci that regulate pathogenic infectious outcomes across species.

7.
Viruses ; 14(6)2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35746763

RESUMO

Human norovirus is a leading cause of acute gastroenteritis, driven by antigenic variants within the GII.4 genotype. Antibody responses to GII.4 vaccination in adults are shaped by immune memory. How children without extensive immune memory will respond to GII.4 vaccination has not been reported. Here, we characterized the GII.4 neutralizing antibody (nAb) landscape following natural infection using a surrogate assay and antigenic site chimera virus-like particles. We demonstrate that the nAb landscape changes with age and virus exposure. Among sites A, C, and G, nAbs from first infections are focused on sites A and C. As immunity develops with age/exposure, site A is supplemented with antibodies that bridge site A to sites C and G. Cross-site nAbs continue to develop into adulthood, accompanied by an increase in nAb to site G. Continued exposure to GII.4 2012 Sydney correlated with a shift to co-dominance of sites A and G. Furthermore, site G nAbs correlated with the broadening of nAb titer across antigenically divergent variants. These data describe fundamental steps in the development of immunity to GII.4 over a lifetime, and illustrate how the antigenicity of one pandemic variant could influence the pandemic potential of another variant through the redirection of immunodominant epitopes.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , Criança , Genótipo , Humanos , Norovirus/genética
8.
Sci Transl Med ; 14(643): eabm3410, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35315683

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic remains uncontrolled despite the rapid rollout of safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, underscoring the need to develop highly effective antivirals. In the setting of waning immunity from infection and vaccination, breakthrough infections are becoming increasingly common and treatment options remain limited. In addition, the emergence of SARS-CoV-2 variants of concern, with their potential to escape neutralization by therapeutic monoclonal antibodies, emphasizes the need to develop second-generation oral antivirals targeting highly conserved viral proteins that can be rapidly deployed to outpatients. Here, we demonstrate the in vitro antiviral activity and in vivo therapeutic efficacy of GS-621763, an orally bioavailable prodrug of GS-441524, the parent nucleoside of remdesivir, which targets the highly conserved virus RNA-dependent RNA polymerase. GS-621763 exhibited antiviral activity against SARS-CoV-2 in lung cell lines and two different human primary lung cell culture systems. GS-621763 was also potently antiviral against a genetically unrelated emerging coronavirus, Middle East respiratory syndrome CoV (MERS-CoV). The dose-proportional pharmacokinetic profile observed after oral administration of GS-621763 translated to dose-dependent antiviral activity in mice infected with SARS-CoV-2. Therapeutic GS-621763 administration reduced viral load and lung pathology; treatment also improved pulmonary function in COVID-19 mouse model. A direct comparison of GS-621763 with molnupiravir, an oral nucleoside analog antiviral that has recently received EUA approval, proved both drugs to be similarly efficacious in mice. These data support the exploration of GS-441524 oral prodrugs for the treatment of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Infecções por Coronavirus , Pró-Fármacos , Adenosina/análogos & derivados , Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Humanos , Camundongos , Nucleosídeos , Pais , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , SARS-CoV-2
9.
bioRxiv ; 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35194605

RESUMO

COVID-19 survivors develop post-acute sequelae of SARS-CoV-2 (PASC), but the mechanistic basis of PASC-associated lung abnormalities suffers from a lack of longitudinal samples. Mouse-adapted SARS-CoV-2 MA10 produces an acute respiratory distress syndrome (ARDS) in mice similar to humans. To investigate PASC pathogenesis, studies of MA10-infected mice were extended from acute disease through clinical recovery. At 15-120 days post-virus clearance, histologic evaluation identified subpleural lesions containing collagen, proliferative fibroblasts, and chronic inflammation with tertiary lymphoid structures. Longitudinal spatial transcriptional profiling identified global reparative and fibrotic pathways dysregulated in diseased regions, similar to human COVID-19. Populations of alveolar intermediate cells, coupled with focal upregulation of pro-fibrotic markers, were identified in persistently diseased regions. Early intervention with antiviral EIDD-2801 reduced chronic disease, and early anti-fibrotic agent (nintedanib) intervention modified early disease severity. This murine model provides opportunities to identify pathways associated with persistent SARS-CoV-2 pulmonary disease and test countermeasures to ameliorate PASC.

10.
Viruses ; 13(10)2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34696463

RESUMO

Acute gastroenteritis (AGE) is a major cause of morbidity and mortality worldwide, resulting in an estimated 440,571 deaths of children under age 5 annually. Rotavirus, norovirus, and sapovirus are leading causes of childhood AGE. A successful rotavirus vaccine has reduced rotavirus hospitalizations by more than 50%. Using rotavirus as a guide, elucidating the determinants, breath, and duration of serological antibody immunity to AGE viruses, as well as host genetic factors that define susceptibility is essential for informing development of future vaccines and improving current vaccine candidates. Here, we summarize the current knowledge of disease burden and serological antibody immunity following natural infection to inform further vaccine development for these three high-burden viruses.


Assuntos
Gastroenteropatias/imunologia , Gastroenteropatias/virologia , Imunidade Humoral , Anticorpos Antivirais , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/virologia , Criança , Pré-Escolar , Diarreia/imunologia , Diarreia/virologia , Gastroenterite/imunologia , Gastroenterite/virologia , Gastroenteropatias/prevenção & controle , Hospitalização , Humanos , Norovirus , Rotavirus , Infecções por Rotavirus/imunologia , Infecções por Rotavirus/virologia , Vacinas contra Rotavirus , Sapovirus , Desenvolvimento de Vacinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA