Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Bot ; 87(12): 1757-64, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11118410

RESUMO

Fluorescence in situ hybridization (FISH) of a large-insert genomic clone, BAC 22B2, previously suggested that Sorghum bicolor (2n = 20) has the tetraploid architecture A(b)A(b)B(b)B(b). Here, we report on BAC 22B2 subclone pCEN38 (1047-bp insert) as related to sorghum and sugarcane. Mitotic FISH of six different subclones of BAC 22B2 showed that pCEN38 produced the strongest specificity to the A(b) subgenome and signal occurred primarily near centromeres. Southern blots of pCEN38 to 21 crop plants revealed a narrow taxonomic distribution. Meiotic metaphase I FISH positioned pCEN38 sequences near active centromeres. Pachytene FISH revealed that the distributions are trimodal in several B(b) and possibly all sorghum chromosomes. DNA sequencing revealed that the pCEN38 fragment contains three tandemly repeated dimers (<280 bp) of the same sequence family found in sorghum clone pSau3A10, and that each dimer consists of two divergent monomers (<140 bp). Sequence comparisons revealed homology between the pCEN38 monomers and the SCEN 140 bp tandem repeat family of sugarcane. FISH of pCEN38 yielded signal in centromere regions of most but not all sugarcane chromosomes. Results suggest that sugarcane and sorghum share at least one ancestor harboring elements similar to pCEN38 and SCEN and that each species had an ancestor in which the repetitive element was weakly present or lacking.

2.
Chromosome Res ; 8(1): 73-6, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10730591

RESUMO

Retrotransposons constitute a ubiquitous and dynamic component of plant genomes. Intragenomic and intergenomic comparisons of related genomes offer potential insights into retrotransposon behavior and genomic effects. Here, we have used fluorescent in-situ hybridization to determine the chromosomal distributions of a Ty1-copia-like retrotransposon in the cotton AD-genome tetraploid Gossypium hirsutum and closely related putative A- and D-genome diploid ancestors. Retrotransposon clone A108 hybridized to all G. hirsutum chromosomes, approximately equal in intensity in the A- and D-subgenomes. Similar results were obtained by hybridization of A108 to the A-genome diploid G. arboreum, whereas no signal was detected on chromosomes of the D-genome diploid G. raimondii. The significance and potential causes of these observations are discussed.


Assuntos
Gossypium/genética , Poliploidia , Retroelementos , Hibridização in Situ Fluorescente
3.
Genetics ; 148(4): 1983-92, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9560411

RESUMO

Physical mapping of BACs by fluorescent in situ hybridization (FISH) was used to analyze the liguleless (lg-1) linkage group in sorghum and compare it to the conserved region in rice and maize. Six liguleless-associated rice restriction fragment length polymorphism (RFLP) markers were used to select 16 homeologous sorghum BACs, which were in turn used to physically map the liguleless linkage group in sorghum. Results show a basic conservation of the liguleless region in sorghum relative to the linkage map of rice. One marker which is distal in rice is more medial in sorghum, and another marker which is found within the linkage group in rice is on a different chromosome in sorghum. BACs associated with linkage group I hybridize to chromosome It, which was identified by using FISH in a sorghum cytogenetic stock trisomic for chromosome I (denoted It), and a BAC associated with linkage group E hybridized to an unidentified chromosome. Selected BACs, representing RFLP loci, were end-cloned for RFLP mapping, and the relative linkage order of these clones was in full agreement with the physical data. Similarities in locus order and the association of RFLP-selected BAC markers with two different chromosomes were found to exist between the linkage map of the liguleless region in maize and the physical map of the liguleless region in sorghum.


Assuntos
Grão Comestível/genética , Genes de Plantas , Oryza , Mapeamento por Restrição , Fatores de Transcrição de Zíper de Leucina Básica , Mapeamento Cromossômico , Biblioteca Gênica , Ligação Genética , Hibridização in Situ Fluorescente , Oryza/genética , Proteínas de Plantas/genética , Polimorfismo de Fragmento de Restrição
4.
Genome ; 40(4): 475-8, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18464840

RESUMO

Fluorescence in situ hybridization (FISH) of a 205 kb Sorghum bicolor bacterial artificial chromosome (BAC) containing a sequence complementary to maize sh2 cDNA produced a large pair of FISH signals at one end of a midsize metacentric chromosome of S. bicolor. Three pairs of signals were observed in metaphase spreads of chromosomes of a sorghum plant containing an extra copy of one arm of the sorghum chromosome arbitrarily designated with the letter D. Therefore, the sequence cloned in this BAC must reside in the arm of chromosome D represented by this monotelosome. This demonstrates a novel procedure for physically mapping cloned genes or other single-copy sequences by FISH, sh2 in this case, by using BACs containing their complementary sequences. The results reported herein suggest homology, at least in part, between one arm of chromosome D in sorghum and the long arm of chromosome 3 in maize.

5.
Genome ; 40(1): 34-40, 1997 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9061912

RESUMO

The extensive use of molecular cytogenetics in human genetics and clinical diagnostics indicates that analogous applications in plants are highly feasible. One sort of application would be the identification of new aneuploids, which traditionally involves either direct karyotypic identification, which is feasible in only a few plant species, or tests with markers (cytogenetic, genetic, or molecular), which require sexual hybridization and at least one subsequent seed or plant generation. We have used meiotic fluorescence in situ hybridization (FISH) to analyze a new monosome of cotton (Gossypium hirsutum L., 2n = 4x = 52, 2(AD)1) that had a phenotype which seemed to be distinct from monosomes in the Cotton Cytogenetic Collection. Painting with A2-genome DNA revealed the monosome's D-subgenome origin. DAPI-PI staining showed that the monosome carries a major NOR, delimiting it to the major NOR-bearing chromosomes of the D-subgenome, i.e., 16 or 23. Dual-color FISH with 5S and 18S-28S rDNAs indicated that the monosome contains separate major clusters of each of these two tandemly repeated rDNA elements, thus delimiting the monosome to chromosome 23, for which the Cotton Cytogenetic Collection has previously been devoid of any sort of deficiency. Of the 26 chromosomes in the cotton genome, the Collection now provides coverage for 16 (70%) in the form of monosomy, and 20 (77%) in the form of monosomy and (or) telosomy. Use of molecular cytogenetic methods to identify a new plant aneuploid in cotton exemplifies the fact that a physicochemical karyotypic chromosome identification system is not required a priori for application of new molecular cytogenetic methods, thus indicating their potential applicability to nearly all plant species.


Assuntos
Gossypium/genética , Monossomia , Corantes Fluorescentes/química , Genoma de Planta , Hibridização in Situ Fluorescente , Indóis/química , Meiose , Região Organizadora do Nucléolo , Propídio/química , Coloração e Rotulagem
6.
Genome ; 40(1): 138-42, 1997 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18464813

RESUMO

In situ hybridization (ISH) for the detection of single- or low-copy sequences, particularly large DNA fragments cloned into YAC or BAC vectors, generally requires the suppression or "blocking" of highly-repetitive DNAs. C0t-1 DNA is enriched for repetitive DNA elements, high or moderate in copy number, and can therefore be used more effectively than total genomic DNA to prehybridize and competitively hybridize repetitive elements that would otherwise cause nonspecific hybridization. C0t-1 DNAs from several mammalian species are commercially available, however, none is currently available for plants to the best of our knowledge. We have developed a simple 1-day procedure to generate C0t-1 DNA without the use of specialized equipment.

7.
Genome ; 38(4): 646-51, 1995 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-7672600

RESUMO

Fluorescent in situ hybridization (FISH) of a 130 kilobase cotton (Gossypium hirsuitum L.) bacterial artificial chromosome (BAC) clone containing a high proportion of single-copy DNA produced a large pair of FISH signals on the distal end of the long arm of a pair of chromosomes of the D-genome species G. raimondii Ulbr. and produced a fainter pair of signals on a small submetacentric pair of chromosomes of the A-genome species G. herbaceum L. The signals were synthetic with a nucleolar organizer region in G. raimondii and G. herbaceum. Signal pairs were easily recognized in interphase and metaphase cells either with or without suppression of repetitive sequences with unlabeled G. hirsutum C0t-1 DNA. High quality FISH results were consistently obtained and image analysis was not required for viewing or photography. Results indicate that FISH of BAC clones is an excellent tool for the establishment of new molecular cytogenetic markers in plants and will likely prove instrumental in the development of useful physical maps for many economically important crop species.


Assuntos
Bactérias/genética , Cromossomos Bacterianos , Gossypium/genética , Clonagem Molecular , Genes Sintéticos , Hibridização in Situ Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA