Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Leukoc Biol ; 110(5): 893-905, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33565160

RESUMO

The chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) is a pivotal driver of acute and chronic inflammatory conditions, cardiovascular disease, autoimmunity, and cancer. MIF modulates the early inflammatory response through various mechanisms, including regulation of neutrophil recruitment and fate, but the mechanisms and the role of the more recently described MIF homolog MIF-2 (D-dopachrome tautomerase; D-DT) are incompletely understood. Here, we show that both MIF and MIF-2/D-DT inhibit neutrophil apoptosis. This is not a direct effect, but involves the activation of mononuclear cells, which secrete CXCL8 and other prosurvival mediators to promote neutrophil survival. Individually, CXCL8 and MIF (or MIF-2) did not significantly inhibit neutrophil apoptosis, but in combination they elicited a synergistic response, promoting neutrophil survival even in the absence of mononuclear cells. The use of receptor-specific inhibitors provided evidence for a causal role of the noncognate MIF receptor CXCR2 expressed on both monocytes and neutrophils in MIF-mediated neutrophil survival. We suggest that the ability to inhibit neutrophil apoptosis contributes to the proinflammatory role ascribed to MIF, and propose that blocking the interaction between MIF and CXCR2 could be an important anti-inflammatory strategy in the early inflammatory response.


Assuntos
Apoptose/imunologia , Oxirredutases Intramoleculares/imunologia , Leucócitos Mononucleares/imunologia , Fatores Inibidores da Migração de Macrófagos/imunologia , Neutrófilos/imunologia , Citocinas/imunologia , Humanos , Inflamação/imunologia , Receptores de Interleucina-8B/imunologia
2.
Methods Mol Biol ; 2080: 1-18, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31745866

RESUMO

Macrophage migration inhibitory factor (MIF) is an upstream regulator of innate immunity and dysregulated MIF is a key mediator of acute and chronic inflammatory processes, autoimmune and cardiovascular diseases, as well as cancer. MIF is a pleiotropic cytokine with chemokine-like functions that has been designated as an atypical chemokine (ACK). It orchestrates leukocyte recruitment and migration into inflamed tissues through non-cognate interactions with the classical chemokine receptors CXCR2 and CXCR4, pathways that are further facilitated by MIF's cognate receptor CD74. Here, we describe two complementary methods that can be used to characterize immune cell migration and motility responses controlled by MIF and its receptors. These are the Transwell filter migration assay, also known as modified Boyden chamber assay, a two-dimensional (2D) device, and a matrix-based three-dimensional (3D) chemotaxis assay. The Transwell system is primarily suitable to study chemotactic cell transmigration responses toward a chemoattractant such as MIF through a porous filter membrane. The 3D chemotaxis setup enables for the cellular tracking of migration, invasion, and motility of single cells using live cell imaging.


Assuntos
Movimento Celular/genética , Quimiotaxia/genética , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Biomarcadores , Técnicas de Cultura de Células , Movimento Celular/imunologia , Células Cultivadas , Quimiocinas/metabolismo , Quimiotaxia/imunologia , Humanos , Microscopia , Monócitos/imunologia , Monócitos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA