Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 36(7): 2512-2530, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38635902

RESUMO

Cereal grains are an important source of food and feed. To provide comprehensive spatiotemporal information about biological processes in developing seeds of cultivated barley (Hordeum vulgare L. subsp. vulgare), we performed a transcriptomic study of the embryo, endosperm, and seed maternal tissues collected from grains 4-32 days after pollination. Weighted gene co-expression network and motif enrichment analyses identified specific groups of genes and transcription factors (TFs) potentially regulating barley seed tissue development. We defined a set of tissue-specific marker genes and families of TFs for functional studies of the pathways controlling barley grain development. Assessing selected groups of chromatin regulators revealed that epigenetic processes are highly dynamic and likely play a major role during barley endosperm development. The repressive H3K27me3 modification is globally reduced in endosperm tissues and at specific genes related to development and storage compounds. Altogether, this atlas uncovers the complexity of developmentally regulated gene expression in developing barley grains.


Assuntos
Endosperma , Regulação da Expressão Gênica de Plantas , Hordeum , Sementes , Transcriptoma , Hordeum/genética , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Transcriptoma/genética , Endosperma/genética , Endosperma/metabolismo , Endosperma/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Regulação da Expressão Gênica no Desenvolvimento , Epigênese Genética , Histonas/metabolismo , Histonas/genética
2.
Sci Rep ; 14(1): 3119, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326519

RESUMO

DNA damage response (DDR) is an essential mechanism by which living organisms maintain their genomic stability. In plants, DDR is important also for normal growth and yield. Here, we explored the DDR of a temperate model crop barley (Hordeum vulgare) at the phenotypic, physiological, and transcriptomic levels. By a series of in vitro DNA damage assays using the DNA strand break (DNA-SB) inducing agent zeocin, we showed reduced root growth and expansion of the differentiated zone to the root tip. Genome-wide transcriptional profiling of barley wild-type and plants mutated in DDR signaling kinase ATAXIA TELANGIECTASIA MUTATED AND RAD3-RELATED (hvatr.g) revealed zeocin-dependent, ATR-dependent, and zeocin-dependent/ATR-independent transcriptional responses. Transcriptional changes were scored also using the newly developed catalog of 421 barley DDR genes with the phylogenetically-resolved relationships of barley SUPRESSOR OF GAMMA 1 (SOG1) and SOG1-LIKE (SGL) genes. Zeocin caused up-regulation of specific DDR factors and down-regulation of cell cycle and histone genes, mostly in an ATR-independent manner. The ATR dependency was obvious for some factors associated with DDR during DNA replication and for many genes without an obvious connection to DDR. This provided molecular insight into the response to DNA-SB induction in the large and complex barley genome.


Assuntos
Bleomicina , Hordeum , Hordeum/genética , Hordeum/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , Reparo do DNA , DNA
3.
J Exp Bot ; 74(8): 2527-2541, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36705553

RESUMO

Rabl organization is a type of interphase chromosome arrangement with centromeres and telomeres clustering at opposite nuclear poles. Here, we analyzed nuclear morphology and chromosome organization in cycling and endoreduplicated nuclei isolated from embryo and endosperm tissues of developing barley seeds. We show that endoreduplicated nuclei have an irregular shape, less sister chromatid cohesion at 5S rDNA loci, and a reduced amount of centromeric histone CENH3. While the chromosomes of the embryo and endosperm nuclei are initially organized in Rabl configuration, the centromeres and telomeres are intermingled within the nuclear space in the endoreduplicated nuclei with an increasing endoreduplication level. Such a loss of chromosome organization suggests that Rabl configuration is introduced and further reinforced by mitotic divisions in barley cell nuclei in a tissue- and seed age-dependent manner.


Assuntos
Hordeum , Hordeum/genética , Endosperma/genética , Núcleo Celular/genética , Histonas/genética , Centrômero/genética
4.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328613

RESUMO

Crested wheatgrass (Agropyron cristatum), a wild relative of wheat, is an attractive source of genes and alleles for their improvement. Its wider use is hampered by limited knowledge of its complex genome. In this work, individual chromosomes were purified by flow sorting, and DNA shotgun sequencing was performed. The annotation of chromosome-specific sequences characterized the DNA-repeat content and led to the identification of genic sequences. Among them, genic sequences homologous to genes conferring plant disease resistance and involved in plant tolerance to biotic and abiotic stress were identified. Genes belonging to the important groups for breeders involved in different functional categories were found. The analysis of the DNA-repeat content identified a new LTR element, Agrocen, which is enriched in centromeric regions. The colocalization of the element with the centromeric histone H3 variant CENH3 suggested its functional role in the grass centromere. Finally, 159 polymorphic simple-sequence-repeat (SSR) markers were identified, with 72 of them being chromosome- or chromosome-arm-specific, 16 mapping to more than one chromosome, and 71 mapping to all the Agropyron chromosomes. The markers were used to characterize orthologous relationships between A. cristatum and common wheat that will facilitate the introgression breeding of wheat using A. cristatum.


Assuntos
Agropyron , Agropyron/genética , Cromossomos de Plantas/genética , Resistência à Doença/genética , Melhoramento Vegetal , Triticum/genética
5.
Appl Microbiol Biotechnol ; 105(3): 1215-1226, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33447868

RESUMO

The Venus flytrap (Dionaea muscipula J. Ellis) is a carnivorous plant able to synthesize large amounts of phenolic compounds, such as phenylpropanoids, flavonoids, phenolic acids, and 1,4-naphtoquinones. In this study, the first genetic transformation of D. muscipula tissues is presented. Two wild-type Rhizobium rhizogenes strains (LBA 9402 and ATCC 15834) were suitable vector organisms in the transformation process. Transformation led to the formation of teratoma (transformed shoot) cultures with the bacterial rolB gene incorporated into the plant genome in a single copy. Using high-pressure liquid chromatography, we demonstrated that transgenic plants were characterized by an increased quantity of phenolic compounds, including 1,4-naphtoquinone derivative, plumbagin (up to 106.63 mg × g-1 DW), and phenolic acids (including salicylic, caffeic, and ellagic acid), in comparison to non-transformed plants. Moreover, Rhizobium-mediated transformation highly increased the bactericidal properties of teratoma-derived extracts. The antibacterial properties of transformed plants were increased up to 33% against Staphylococcus aureus, Enterococcus faecalis, and Escherichia coli and up to 7% against Pseudomonas aeruginosa. For the first time, we prove the possibility of D. muscipula transformation. Moreover, we propose that transformation may be a valuable tool for enhancing secondary metabolite production in D. muscipula tissue and to increase bactericidal properties against human antibiotic-resistant bacteria. KEY POINTS: • Rhizobium-mediated transformation created Dionaea muscipula teratomas. • Transformed plants had highly increased synthesis of phenolic compounds. • The MBC value was connected with plumbagin and phenolic acid concentrations.


Assuntos
Droseraceae , Agrobacterium/genética , Antibacterianos/farmacologia , Humanos , Fenóis
6.
Biotechnol Adv ; 46: 107659, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33259907

RESUMO

The identification of causal genomic loci and their interactions underlying various traits in plants has been greatly aided by progress in understanding the organization of the nuclear genome. This provides clues to the responses of plants to environmental stimuli at the molecular level. Apart from other uses, these insights are needed to fully explore the potential of new breeding techniques that rely on genome editing. However, genome analysis and sequencing is not straightforward in the many agricultural crops and their wild relatives that possess large and complex genomes. Chromosome genomics streamlines this task by dissecting the genome to single chromosomes whose DNA is then used instead of nuclear DNA. This results in a massive and lossless reduction in DNA sample complexity, reduces the time and cost of the experiment, and simplifies data interpretation. Flow cytometric sorting of condensed mitotic chromosomes makes it possible to purify single chromosomes in large quantities, and as the DNA remains intact this process can be coupled successfully with many techniques in molecular biology and genomics. Since the first experiments with flow cytometric sorting in the late 1980s, numerous applications have been developed, and chromosome genomics has been having a significant impact in many areas of research, including the sequencing of complex genomes of important crops and gene cloning. This review discusses these applications, describes their contribution to advancements in plant genome analysis and gene cloning, and outlines future directions.


Assuntos
Cromossomos de Plantas , Melhoramento Vegetal , Cromossomos de Plantas/genética , Genoma de Planta/genética , Genômica , Plantas/genética
7.
BMC Plant Biol ; 20(1): 280, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32552738

RESUMO

BACKGROUND: Cultivated grasses are an important source of food for domestic animals worldwide. Increased knowledge of their genomes can speed up the development of new cultivars with better quality and greater resistance to biotic and abiotic stresses. The most widely grown grasses are tetraploid ryegrass species (Lolium) and diploid and hexaploid fescue species (Festuca). In this work, we characterized repetitive DNA sequences and their contribution to genome size in five fescue and two ryegrass species as well as one fescue and two ryegrass cultivars. RESULTS: Partial genome sequences produced by Illumina sequencing technology were used for genome-wide comparative analyses with the RepeatExplorer pipeline. Retrotransposons were the most abundant repeat type in all seven grass species. The Athila element of the Ty3/gypsy family showed the most striking differences in copy number between fescues and ryegrasses. The sequence data enabled the assembly of the long terminal repeat (LTR) element Fesreba, which is highly enriched in centromeric and (peri)centromeric regions in all species. A combination of fluorescence in situ hybridization (FISH) with a probe specific to the Fesreba element and immunostaining with centromeric histone H3 (CENH3) antibody showed their co-localization and indicated a possible role of Fesreba in centromere function. CONCLUSIONS: Comparative repeatome analyses in a set of fescues and ryegrasses provided new insights into their genome organization and divergence, including the assembly of the LTR element Fesreba. A new LTR element Fesreba was identified and found in abundance in centromeric regions of the fescues and ryegrasses. It may play a role in the function of their centromeres.


Assuntos
Cromossomos de Plantas , Festuca/genética , Genoma de Planta/genética , Lolium/genética , Sequências Repetitivas de Ácido Nucleico , Centrômero/genética
8.
Plant J ; 102(1): 68-84, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31733119

RESUMO

Repetitive DNA sequences and some genes are epigenetically repressed by transcriptional gene silencing (TGS). When genetic mutants are not available or problematic to use, TGS can be suppressed by chemical inhibitors. However, informed use of epigenetic inhibitors is partially hampered by the absence of any systematic comparison. In addition, there is emerging evidence that epigenetic inhibitors cause genomic instability, but the nature of this damage and its repair remain unclear. To bridge these gaps, we compared the effects of 5-azacytidine (AC), 2'-deoxy-5-azacytidine (DAC), zebularine and 3-deazaneplanocin A (DZNep) on TGS and DNA damage repair. The most effective inhibitor of TGS was DAC, followed by DZNep, zebularine and AC. We confirmed that all inhibitors induce DNA damage and suggest that this damage is repaired by multiple pathways with a critical role of homologous recombination and of the SMC5/6 complex. A strong positive link between the degree of cytidine analog-induced DNA demethylation and the amount of DNA damage suggests that DNA damage is an integral part of cytidine analog-induced DNA demethylation. This helps us to understand the function of DNA methylation in plants and opens the possibility of using epigenetic inhibitors in biotechnology.


Assuntos
Dano ao DNA , Epigênese Genética , Inativação Gênica , Adenosina/análogos & derivados , Adenosina/farmacologia , Arabidopsis/genética , Azacitidina/farmacologia , Aberrações Cromossômicas/efeitos dos fármacos , Citidina/análogos & derivados , Citidina/farmacologia , Dano ao DNA/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Decitabina/farmacologia , Epigênese Genética/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Heterocromatina/efeitos dos fármacos , Interferência de RNA/efeitos dos fármacos , Sequências de Repetição em Tandem/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA