Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomedicines ; 12(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38672090

RESUMO

In recent years, extensive research has delved into the pathophysiology of local reactions triggered by Bothrops snake venoms. Even though antivenom works well at reducing death and systemic effects, it is still not very effective in treating local reactions because it cannot counteract damage that has already been triggered. This limitation might be attributed to certain molecules that amplify the venom-induced innate response. While evidence suggests endogenous mediators at the venom site play a role in this envenomation, in Brazil, the concurrent use of anti-inflammatory agents or other drugs alongside antivenom remains uncommon. This study evaluated the pharmacological mediation of alterations in leukocyte-endothelium interactions following the experimental envenomation of mice with Bothrops jararaca venom, the main culprit of snake-related accidents in Southeast Brazil. We treated envenomed mice with inhibitors of different pharmacological pathways and observed the cremaster muscle microcirculation with intravital microscopy. We found that eicosanoids related to cyclooxygenase pathways and nitric oxide significantly contributed to B. jararaca venom-induced alterations in leukocyte-endothelium interactions. Conversely, lipoxygenase-mediated eicosanoids, histamine, and serotonin had minimal participation. Notably, dexamethasone and antivenom treatment diminished B. jararaca venom-induced alterations in leukocyte-endothelium interactions. The limited efficacy of the antivenom in managing Bothrops venom-induced local reactions emphasizes the critical need for supplementary treatments to enhance therapeutic outcomes.

2.
Toxins (Basel) ; 16(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38535794

RESUMO

Angiogenesis, the formation of new blood vessels, plays a critical role in various physiological and pathological conditions. Snake venom disintegrins (SVDs) have been identified as significant regulators of this process. In this review, we explore the dual roles of SVD in angiogenesis, both as antiangiogenic agents by inhibiting integrin binding and interfering with vascular endothelial growth factors and as proangiogenic agents by enhancing integrin binding, stimulating cell migration and proliferation, and inducing neoangiogenesis. Studies in vitro and in animal models have demonstrated these effects and offer significant therapeutic opportunities. The potential applications of SVD in diseases related to angiogenesis, such as cancer, ocular diseases, tissue regeneration, wound healing, and cardiovascular diseases, are also discussed. Overall, SVDs are promising potential therapeutics, and further advances in this field could lead to innovative treatments for diseases related to angiogenesis.


Assuntos
Angiogênese , Desintegrinas , Animais , Inibidores da Angiogênese , Venenos de Serpentes , Integrinas
3.
Front Pharmacol ; 14: 1184006, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397495

RESUMO

Introduction: Alzheimer's disease (AD) is the main type of dementia, caused by the accumulation of amyloid plaques, formed by amyloid peptides after being processed from amyloid precursor protein (APP) by γ- and ß-secretases (BACE-1). Although amyloid peptides have been well established for AD, they have been found in other neurodegenerative diseases, such as Parkinson's disease, Lewy body dementia, and amyotrophic lateral sclerosis. Inhibitors of BACE-1 have been searched and developed, but clinical trials failed due to lack of efficacy or toxicity. Nevertheless, it is still considered a good therapeutic target, as it was proven to remove amyloid peptides and improve memory. Methods: In this work, we designed a peptide based on a sequence obtained from the marine fish Merluccius productus and evaluated it by molecular docking to verify its binding to BACE-1, which was tested experimentally by enzymatic kinetics and cell culture assays. The peptide was injected in healthy mice to study its pharmacokinetics and toxicity. Results: We could obtain a new sequence in which the first N-terminal amino acids and the last one bound to the catalytic site of BACE-1 and showed high stability and hydrophobicity. The synthetic peptide showed a competitive inhibition of BACE-1 and Ki = 94 nM, and when injected in differentiated neurons, it could reduce Aß42o production. In plasma, its half-life is ∼1 h, clearance is 0.0015 µg/L/h, and Vss is 0.0015 µg/L/h. The peptide was found in the spleen and liver 30 min after injection and reduced its level after that, when it was quantified in the kidneys, indicating its fast distribution and urinary excretion. Interestingly, the peptide was found in the brain 2 h after its administration. Histological analysis showed no morphological alteration in any organ, as well as the absence of inflammatory cells, indicating a lack of toxicity. Discussion: We obtained a new BACE-1 inhibitor peptide with fast distribution to the tissues, without accumulation in any organ, but found in the brain, with the possibility to reach its molecular target, BACE-1, contributing to the reduction in the amyloid peptide, which causes amyloid-linked neurodegenerative diseases.

4.
Toxins (Basel) ; 14(7)2022 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-35878210

RESUMO

Small RNAs (sRNAs) and microRNAs (miRNAs) are small endogenous noncoding single-stranded RNAs that regulate gene expression in eukaryotes. Experiments in mice and humans have revealed that a typical small RNA can affect the expression of a wide range of genes, implying that small RNAs function as global regulators. Here, we used small RNA deep sequencing to investigate how jararhagin, a metalloproteinase toxin produced from the venom of Bothrops jararaca, affected mmu-miRNAs expression in mice 2 hours (Jar 2hrs) and 24 hours (Jar 24hrs) after injection compared to PBS control. The findings revealed that seven mmu-miRNAs were substantially differentially expressed (p value (p (Corr) cut-off 0.05, fold change ≥ 2) at 2 hrs after jararhagin exposure and that the majority of them were upregulated when compared to PBS. In contrast to these findings, a comparison of Jar 24hrs vs. PBS 24hrs demonstrated that the majority of identified mmu-miRNAs were downregulated. Furthermore, the studies demonstrated that mmu-miRNAs can target the expression of several genes involved in the MAPK signaling pathway. The steady antithetical regulation of mmu-miRNAs may correlate with the expression of genes that trigger apoptosis via MAPK in the early stages, and this effect intensifies with time. The findings expand our understanding of the effects of jararhagin on local tissue lesions at the molecular level.


Assuntos
Bothrops , Venenos de Crotalídeos , MicroRNAs , Animais , Bothrops/metabolismo , Venenos de Crotalídeos/metabolismo , Humanos , Metaloendopeptidases/metabolismo , Metaloproteases/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Veneno de Bothrops jararaca
5.
Biochem Biophys Res Commun ; 521(2): 402-407, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31668920

RESUMO

Snake venom metalloproteinases (SVMPs) are key toxins involved in local inflammatory reactions after snakebites. This study aimed to investigate the effect of SVMP domains on the alterations in leukocyte-endothelium interactions in the microcirculation of mouse cremaster muscle. We studied three toxins: BnP1, a PI-toxin isolated from Bothrops neuwiedi venom, which only bears a catalytic domain; Jararhagin (Jar), a PIII-toxin isolated from Bothrops jararaca venom with a catalytic domain, as well as ECD-disintegrin and cysteine-rich domains; and Jar-C, which is produced from the autolysis of Jar and devoid of a catalytic domain. All these toxins induced an increase in the adhesion and migration of leukocytes. By inhibiting the catalytic activity of Jar and BnP1 with 1.10-phenanthroline (oPhe), leukocytes were no longer recruited. Circular dichroism analysis showed structural changes in oPhe-treated Jar, but these changes were not enough to prevent the binding of Jar to collagen, which occurred through the ECD-disintegrin domain. The results showed that the catalytic domain of SVMPs is the principal domain responsible for the induction of leukocyte recruitment and suggest that the other domains could also present inflammatory potential only when devoid of the catalytic domain, as with Jar-C.


Assuntos
Domínio Catalítico/fisiologia , Leucócitos/patologia , Metaloproteases/farmacologia , Venenos de Serpentes/enzimologia , Músculos Abdominais/irrigação sanguínea , Animais , Bothrops , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Endotélio/metabolismo , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Metaloproteases/química , Camundongos , Microcirculação
6.
Peptides ; 53: 13-21, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23948330

RESUMO

Echinometra lucunter is an abundant sea urchin found in Brazilian waters. Accidents caused by this animal are common and are characterized by the penetration of the spines in the skin, which raises an inflammatory reaction through mechanical trauma as well as by the presumable action of toxins. Additionally, there have been reports of inflammatory reaction after the consumption of raw sea urchin eggs. In this work, we have isolated a peptide from E. lucunter coelomic fluid that could elicit inflammatory reactions, such as paw edema, leukocyte recruitment and diminishment of the pain threshold. This peptide was termed Echinometrin. Moreover, the peptide administration was able to produce in vivo degranulation of mouse mast cells, in a dose-response manner. The peptide was 'de novo' sequenced by mass spectrometry and its synthetic analog could reproduce all the observed effects. Sequence alignment indicates that this peptide is comprised in vitellogenin, an abundant nutrient protein present in the gametogenic cells of sea urchins, making it possible that echinometrin would be a cryptide with pro-inflammatory effects.


Assuntos
Mastócitos/metabolismo , Peptídeos/metabolismo , Ouriços-do-Mar/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Masculino , Espectrometria de Massas , Camundongos , Peptídeos/química , Ratos , Ratos Wistar , Ouriços-do-Mar/química
7.
Exp Biol Med (Maywood) ; 236(10): 1166-72, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21885478

RESUMO

Patagonfibrase is a P-III class metalloproteinase isolated from the venom of Philodryas patagoniensis, a South-American, rear-fanged 'colubrid' snake responsible for accidents with clinical significance. Since local inflammatory reactions are conspicuous signs of snakebites inflicted by this species and taking into consideration that most snake venom metalloproteinases exhibit inflammatory activity, this study deals with the proinflammatory effects evoked by patagonfibrase. Herein, we demonstrate that patagonfibrase causes a time- and dose-dependent hemorrhagic edema when injected into mouse hind paws. The peak of edema occurred at 30 min after injection, and the minimum edematogenic dose was 0.021 µg. By histological analysis, the presence of moderate to marked edema and hemorrhage, and a mild inflammatory infiltrate was observed. When injected subcutaneously into the scrotal bag of mice, patagonfibrase induced cell recruitment with a significant alteration in physiological parameters of leukocyte-endothelium interaction. The presence of 1 mmol/L o-phenanthroline, which chelates metal ions, significantly inhibited the proinflammatory effects induced by patagonfibrase. Taken together, these results imply that patagonfibrase is an important contributor to local inflammation elicited by P. patagoniensis envenomation, which may pave the way for novel therapeutic strategies to treat this snakebite. Moreover, our findings demonstrate for the first time that a venom metalloproteinase from a rear-fanged snake elicits proinflammatory effects mainly mediated by its catalytic activity.


Assuntos
Colubridae , Inflamação/induzido quimicamente , Metaloproteases/farmacologia , Venenos de Serpentes/farmacologia , Animais , Edema/induzido quimicamente , Hemorragia/induzido quimicamente , Injeções Subcutâneas , Leucócitos/efeitos dos fármacos , Masculino , Camundongos
8.
Exp Biol Med (Maywood) ; 236(3): 277-80, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21355017

RESUMO

The sea urchin, Echinometra lucunter, can be found along the Western Central Atlantic shores. In Brazil, it is responsible by circa 50% of the accidents caused by marine animals. The symptoms usually surpass trauma and may be pathologically varied and last differently, ranging from spontaneous healing in a few days, to painful consequences lasting for weeks. In this work, we have mimicked the sea urchin accident by administering an aqueous extract of the spine into mice and rats and evaluated the pathophysiological developments. Our data clearly indicate that the sea urchin accident is indeed a pro-inflammatory event, triggered by toxins present in the spine that can cause edema and alteration in the leukocyte-endothelial interaction. Moreover, the spine extract was shown to exhibit a hyperalgesic effect. The extract is rich in proteins, as observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but also contains other molecules that can be analyzed by reversed phase high-performance liquid chromatography. Altogether, these effects corroborate that an E. lucunter encounter is an accident and not an incident, as frequently reported by the victims.


Assuntos
Extratos Celulares/imunologia , Extratos Celulares/toxicidade , Inflamação/induzido quimicamente , Inflamação/imunologia , Ouriços-do-Mar/metabolismo , Animais , Brasil , Modelos Animais de Doenças , Edema/induzido quimicamente , Células Endoteliais/imunologia , Leucócitos/imunologia , Camundongos , Ratos
9.
Toxicon ; 55(2-3): 227-34, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19646466

RESUMO

Various toxins isolated from Bothrops snake venoms induce inflammatory reactions and have been claimed to contribute to the severity of local symptoms present in this envenomation. Notwithstanding, the relative participation of serine proteases, metalloproteases and phospholipases A(2) in the inflammatory reaction produced by crude Bothrops venoms is poorly understood. Herein, crude Bothrops jararaca venom was treated with phenylmethanesulfonyl fluoride (PMSF), 1,10-phenanthroline (oPhe), or p-bromophenacyl-bromide (p-BPB) to inhibit those classes of enzymes, respectively, and inflammatory parameters were evaluated and compared to those induced by the control crude venom. The intensity of edema and hyperalgesia/allodynia was remarkably reduced in animals administered with oPhe-treated venom. Leukocyte-endothelium interactions (LEI), such as adhesion and migration of leukocytes, were also modified at 2h and 24h. Edema and LEI parameters induced by p-BPB-treated venom were similar to those observed with the control venom, but hyperalgesia/allodynia was significantly lower. Inflammatory parameters induced by PMSF-treated venom were similar to those induced by the crude venom, except for a mild reduction in edema intensity. Our results indicate that metalloproteases have a pivotal role in the inflammatory reactions induced by B. jararaca venom, and phospholipases A(2) and serine proteases have a minor role.


Assuntos
Bothrops , Inflamação/induzido quimicamente , Metaloproteases/toxicidade , Fosfolipases A2/toxicidade , Serina Proteases/toxicidade , Venenos de Víboras/enzimologia , Venenos de Víboras/toxicidade , Animais , Movimento Celular/efeitos dos fármacos , Edema/induzido quimicamente , Edema/patologia , Células Endoteliais/efeitos dos fármacos , Hiperalgesia/induzido quimicamente , Hiperalgesia/psicologia , Inflamação/patologia , Masculino , Camundongos , Neutrófilos/efeitos dos fármacos , Medição da Dor/efeitos dos fármacos , Inibidores de Fosfolipase A2 , Estimulação Física , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia
10.
Toxicon ; 51(7): 1151-7, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18343474

RESUMO

The effect of Bothrops antivenom on blocking the disturbances induced by Bothrops jararaca venom in leukocyte-endothelial interactions (LEI) at the microcirculation of the cremaster muscle in mice was evaluated using intravital microscopy. Our findings showed that an i.v. injection of Bothrops antivenom, per se, induced changes in LEI, similar to those induced by an s.c. injection of B. jararaca venom, and that Bothrops antivenom can also induce ephemeral symptoms, such as tremor and dyspnea in mice. These effects were mostly due to phenol used in Bothrops antivenom as a preservative, since animals injected i.v. with a phenol solution, but not with phenol-free Bothrops antivenom, presented those effects on LEI, and also tremor and dyspnea. In addition, phenol-free antivenom abrogated venom-induced changes in LEI parameters. The present data demonstrate that Bothrops antivenom contains antibodies that neutralize toxins of B. jararaca venom that impair LEI, and suggest that the phenol used as a preservative in it can originate some undesired effects.


Assuntos
Antivenenos/uso terapêutico , Bothrops , Venenos de Crotalídeos/antagonistas & inibidores , Endotélio Vascular/efeitos dos fármacos , Leucócitos/efeitos dos fármacos , Fenol/farmacologia , Conservantes Farmacêuticos/farmacologia , Animais , Antivenenos/imunologia , Venenos de Crotalídeos/imunologia , Relação Dose-Resposta a Droga , Dispneia/induzido quimicamente , Dispneia/fisiopatologia , Injeções Intravenosas , Masculino , Camundongos , Microcirculação/efeitos dos fármacos , Músculo Esquelético/irrigação sanguínea , Testes de Neutralização , Tremor/induzido quimicamente , Tremor/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA