Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale Adv ; 6(11): 2860-2874, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38817436

RESUMO

Targeting cancer cells without affecting normal cells poses a particular challenge. Nevertheless, the utilization of innovative nanomaterials in targeted cancer therapy has witnessed significant growth in recent years. In this study, we examined two layered carbon nanomaterials, graphene and carbon nanodiscs (CNDs), both of which possess extraordinary physicochemical and structural properties alongside their nano-scale dimensions, and explored their potential as nanocarriers for quercetin, a bioactive flavonoid known for its potent anticancer properties. Within both graphitic allotropes, oxidation results in heightened hydrophilicity and the incorporation of oxygen functionalities. These factors are of great significance for drug delivery purposes. The successful oxidation and interaction of quercetin with both graphene (GO) and CNDs (oxCNDs) have been confirmed through a range of characterization techniques, including FTIR, Raman, and XPS spectroscopy, as well as XRD and AFM. In vitro anticancer tests were conducted on both normal (NIH/3T3) and glioblastoma (U87) cells. The results revealed that the bonding of quercetin with GO and oxCNDs enhances its cytotoxic effect on cancer cells. GO-Quercetin and oxCNDs-Quercetin induced G0/G1 cell cycle arrest in U87 cells, whereas oxCNDs caused G2/M arrest, indicating a distinct mode of action. In long-term survival studies, cancer cells exhibited significantly lower viability than normal cells at all corresponding doses of GO-Quercetin and oxCNDs-Quercetin. This work leads us to conclude that the conjugation of quercetin to GO and oxCNDs shows promising potential for targeted anticancer activity. However, further research at the molecular level is necessary to substantiate our preliminary findings.

2.
J Funct Biomater ; 14(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37888179

RESUMO

Superparamagnetic iron oxide nanoparticles (SPIONs) have garnered significant attention in the medical sector due to their exceptional superparamagnetic properties and reliable tracking capabilities. In this study, we investigated the immunotoxicity of SPIONs with a modified surface to enhance hydrophilicity and prevent aggregate formation. The synthesized SPIONs exhibited a remarkably small size (~4 nm) and underwent surface modification using a novel "haircut" reaction strategy. Experiments were conducted in vitro using a human monocytic cell line (THP-1). SPIONs induced dose-dependent toxicity to THP-1 cells, potentially by generating ROS and initiating the apoptotic pathway in the cells. Concentrations up to 10 µg/mL did not affect the expression of Nrf2, HO-1, NF-κB, or TLR-4 proteins. The results of the present study demonstrated that highly hydrophilic SPIONs were highly toxic to immune cells; however, they did not activate pathways of inflammation and immune response. Further investigation into the mechanisms of cytotoxicity is warranted to develop a synthetic approach for producing effective, highly hydrophilic SPIONs with little to no side effects.

3.
Nanomaterials (Basel) ; 13(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36839082

RESUMO

Carbon nanotubes (CNTs) possess excellent physicochemical and structural properties alongside their nano dimensions, constituting a medical platform for the delivery of different therapeutic molecules and drug systems. Hydroxytyrosol (HT) is a molecule with potent antioxidant properties that, however, is rapidly metabolized in the organism. HT immobilized on functionalized CNTs could improve its oral absorption and protect it against rapid degradation and elimination. This study investigated the effects of cellular oxidized multiwall carbon nanotubes (oxMWCNTs) as biocompatible carriers of HT. The oxidation of MWCNTs via H2SO4 and HNO3 has a double effect since it leads to increased hydrophilicity, while the introduced oxygen functionalities can contribute to the delivery of the drug. The in vitro effects of HT, oxMWCNTS, and oxMWCNTS functionalized with HT (oxMWCNTS_HT) were studied against two different cell lines (NIH/3T3 and Tg/Tg). We evaluated the toxicity (MTT and clonogenic assay), cell cycle arrest, and reactive oxygen species (ROS) formation. Both cell lines coped with oxMWCNTs even at high doses. oxMWCNTS_HT acted as pro-oxidants in Tg/Tg cells and as antioxidants in NIH/3T3 cells. These findings suggest that oxMWCNTs could evolve into a promising nanocarrier suitable for targeted drug delivery in the future.

4.
Nanomaterials (Basel) ; 12(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35808131

RESUMO

In this work, we demonstrated the ability of the cyanobacterium Pseudanabaena/Limnothrix sp. to produce ultra-small silver nanoparticlesin the forms of metallic silver (Ag0) and silver oxides (AgxOy) via a facile green synthetic process. The biological compounds in the cyanobacterial cellular extract acted both as reducing agents for silver ions and functional stabilizing agents for the silver nanoparticles. Furthermore, the antibacterical activity of the as-synthesized nanoparticles against Gram-negative Escherichia coli and Gram-positive Corynebacterium glutamicum bacterial cells was evaluated. The experimental results revealed a remarkable bactericidal activity of the nanoparticles that was both time-dependent and dose-dependent. In addition to their excellent bactericidal properties, the developed nanoparticles can be used as nanosupports in various environmental, biological, and medical applications.

5.
Sci Rep ; 10(1): 8244, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427871

RESUMO

A facile, environment-friendly, versatile and reproducible approach to the successful oxidation of fullerenes (oxC60) and the formation of highly hydrophilic fullerene derivatives is introduced. This synthesis relies on the widely known Staudenmaier's method for the oxidation of graphite, to produce both epoxy and hydroxy groups on the surface of fullerenes (C60) and thereby improve the solubility of the fullerene in polar solvents (e.g. water). The presence of epoxy groups allows for further functionalization via nucleophilic substitution reactions to generate new fullerene derivatives, which can potentially lead to a wealth of applications in the areas of medicine, biology, and composite materials. In order to justify the potential of oxidized C60 derivatives for bio-applications, we investigated their cytotoxicity in vitro as well as their utilization as support in biocatalysis applications, taking the immobilization of laccase for the decolorization of synthetic industrial dyes as a trial case.


Assuntos
Citotoxinas/química , Fulerenos/química , Lacase/química , Animais , Biocatálise , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular , Citotoxinas/síntese química , Enzimas Imobilizadas/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Oxirredução , Solubilidade
6.
ACS Omega ; 4(19): 18100-18107, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31720512

RESUMO

Much of the research effort concerning layered materials is directed toward their use as building blocks for the development of hybrid nanostructures with well-defined dimensions and behavior. Here, we report the fabrication through layer-by-layer deposition and intercalation chemistry of a new type of clay-based hybrid film, where functionalized carbon nanotubes are sandwiched between nanometer-sized smectite clay platelets. Single-walled carbon nanotubes (SWCNTs) were covalently functionalized in a single step with phenol groups, via 1,3-dipolar cycloaddition, to allow for stable dispersion in polar solvents. For the production of hybrid thin films, a bottom-up approach combining self-assembly with Langmuir-Schaefer deposition was applied. Smectite clay nanoplatelets act as a structure-directing interface and reaction media for grafting functionalized carbon nanotubes in a bidimensional array, allowing for a controllable layer-by-layer growth at a nanoscale. Hybrid clay/SWCNT multilayer films deposited on various substrates were characterized by X-ray reflectivity, Raman, and X-ray photoelectron spectroscopies, as well as atomic force microscopy.

7.
J Colloid Interface Sci ; 524: 388-398, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29674283

RESUMO

The scientific and technological potential of graphene's includes the development of light, open 3D hybrid structures with high surface area, tunable pore size and aromatic functionalities. Towards this aim, we describe a scalable and low-cost bottom-up approach that combines self-assembly and Langmuir-Schaefer deposition for the production of fullerene-intercalated graphene oxide hybrids. This method uses graphene oxide (GO) nanosheets as template for the attachment of two types of fullerene derivatives (bromo-fullerenes, C60Br24 and fullerols, C60(OH)24) in a bi-dimensional arrangement, allowing a layer-by-layer growth with control at nanoscale. Our film preparation approach relies on a bottom-up process that includes the formation of a hybrid organo-graphene Langmuir film, which is transferred onto a substrate and then brought in contact with C60(OH)24 molecules in solution to induce self-assembly. In the case of grafting C60Br24 molecules into graphene a further modification of the GO platelets was performed by bringing the surface of the transferred GO Langmuir film in contact with a second amino surfactant solution. Repeating these deposition cycles, pillared structures were fabricated in thin films form. These fullerene-based hybrid thin films were characterized by Raman and X-ray photoelectron (XPS) spectroscopies, X-ray diffraction (XRD), Atomic Force Microscopy (AFM) and contact angle measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA