Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 133(1): 014705, 2010 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-20614982

RESUMO

Monte Carlo simulations at constant pressure are performed to study coexistence and interfacial properties of the liquid-solid transition in hard spheres and in colloid-polymer mixtures. The latter system is described as a one-component Asakura-Oosawa (AO) model where the polymer's degrees of freedom are incorporated via an attractive part in the effective potential for the colloid-colloid interactions. For the considered AO model, the polymer reservoir packing fraction is eta(p) (r)=0.1 and the colloid-polymer size ratio is q[triple bond]sigma(p)/sigma=0.15 (with sigma(p) and sigma as the diameter of polymers and colloids, respectively). Inhomogeneous solid-liquid systems are prepared by placing the solid fcc phase in the middle of a rectangular simulation box, creating two interfaces with the adjoined bulk liquid. By analyzing the growth of the crystalline region at various pressures and for different system sizes, the coexistence pressure p(co) is obtained, yielding p(co)=11.576 k(B)T/sigma(3) for the hard-sphere system and p(co)=8.00 k(B)T/sigma(3) for the AO model (with k(B) as the Boltzmann constant and T as the temperature). Several order parameters are introduced to distinguish between solid and liquid phases and to describe the interfacial properties. From the capillary-wave broadening of the solid-liquid interface, the interfacial stiffness is obtained for the (100) crystalline plane, giving the values gamma approximately 0.49 k(B)T/sigma(2) for the hard-sphere system and gamma approximately 0.95 k(B)T/sigma(2) for the AO model.

2.
J Phys Condens Matter ; 21(46): 464102, 2009 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21715866

RESUMO

Using molecular dynamics (MD) and Monte Carlo (MC) simulations interfacial properties of crystal-fluid interfaces are investigated for the hard sphere system and the one-component metallic system Ni (the latter modeled by a potential of the embedded atom type). Different local order parameters are considered to obtain order parameter profiles for systems where the crystal phase is in coexistence with the fluid phase, separated by interfaces with (100) orientation of the crystal. From these profiles, the mean-squared interfacial width w(2) is extracted as a function of system size. We rationalize the prediction of capillary wave theory that w(2) diverges logarithmically with the lateral size of the system. We show that one can estimate the interfacial stiffness [Formula: see text] from the interfacial broadening, obtaining [Formula: see text] for hard spheres and [Formula: see text] for Ni.

3.
J Phys Chem B ; 112(42): 13231-7, 2008 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-18826187

RESUMO

The polymorphism of an industrial important pigment (PR179) was studied with a combination of standard crystal structure prediction and metadynamics. The former provided a starting set of candidate polymorphs whose structural and thermal stability were then probed by metadynamics. Moreover, metadynamics allowed for exploring the free energy surface to look for other possible polymorphs that were not included in the original set. Our calculations indicate that two structures have a high structural stability and are therefore good candidates to be found in experiments. The lower energy phase of the two indeed corresponds to the known polymorph, and we suggest that the other might be a metastable polymorph not yet experimentally discovered.

4.
Phys Rev Lett ; 100(3): 036103, 2008 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-18233006

RESUMO

In this Letter we report a simulation study in which we compare the solid-liquid interfacial free energy of NaCl at coexistence, gamma_{LS}, with the value that follows from the height of the homogeneous nucleation barrier. The two estimates differ by more than 100%. Smaller discrepancies are found for gamma_{LS} of hard-sphere and of Lennard-Jones particles. We consider a variety of possible causes for this discrepancy and conclude that it is due to a finite-size effect that cannot be corrected for by any simple thermodynamic procedure. By taking into account the finite-size effects of gamma_{LS} obtained in real nucleation experiments, we obtain quantitative agreement between gamma_{LS} estimated in the simulations and derived from the experiments. Our finding suggests that most published solid-liquid surface free energies derived from nucleation experiments will have to be revised.

5.
Nat Mater ; 6(3): 230-4, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17293852

RESUMO

The physics of sliding nanofriction at high temperature near the substrate melting point, TM, is so far unexplored. We conducted simulations of hard tips sliding on a prototype non-melting surface, NaCl(100), revealing two distinct and opposite phenomena for ploughing and for grazing friction in this regime. We found a frictional drop close to TM for deep ploughing and wear, but on the contrary a frictional rise for grazing, wearless sliding. For both phenomena, we obtain a fresh microscopic understanding, relating the former to 'skating' through a local liquid cloud, and the latter to linear response properties of the free substrate surface. We argue that both phenomena occur more generally on surfaces other than NaCl and should be pursued experimentally. Most metals, in particular those possessing one or more close-packed non-melting surfaces, such as Pb, Al or Au(111), are likely to behave similarly.

6.
J Chem Phys ; 123(16): 164701, 2005 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-16268716

RESUMO

This paper presents a broad theoretical and simulation study of the high-temperature behavior of crystalline alkali halide surfaces typified by NaCl(100), of the liquid NaCl surface near freezing, and of the very unusual partial wetting of the solid surface by the melt. Simulations are conducted using two-body rigid-ion Born-Mayer-Huggins-Fumi-Tosi (BMHFT) potentials, with full treatment of long-range Coulomb forces. After a preliminary check of the description of bulk NaCl provided by these potentials, which seems generally good even at the melting point, we carry out a new investigation of solid and liquid surfaces. Solid NaCl(100) is found in this model to be very anharmonic and yet exceptionally stable when hot. It is predicted by a thermodynamic integration calculation of the surface free energy that NaCl(100) should be a well-ordered, nonmelting surface, metastable even well above the melting point. By contrast, the simulated liquid NaCl surface is found to exhibit large thermal fluctuations and no layering order. In spite of that, it is shown to possess a relatively large surface free energy. The latter is traced to a surface entropy deficit, reflecting some kind of surface short-range order. We show that the surface short-range order is most likely caused by the continuous transition of the bulk ionic melt into the vapor, made of NaCl molecules and dimers rather than of single ions. Finally, the solid-liquid interface free energy is derived through Young's equation from direct simulation of partial wetting of NaCl(100) by a liquid droplet. The resulting interface free energy is large, in line with the conspicuous solid-liquid 27% density difference. A partial wetting angle near 50 degrees close to the experimental value of 48 degrees is obtained in the process. It is concluded that three elements, namely, the exceptional anharmonic stability of the solid (100) surface, the molecular short-range order at the liquid surface, and the costly solid-liquid interface, all conspire to cause the anomalously poor wetting of the (100) surface by its own melt in the BMHFT model of NaCl-and most likely also in real alkali halide surfaces.

7.
Phys Rev Lett ; 94(17): 176105, 2005 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15904317

RESUMO

Alkali halide (100) crystal surfaces are anomalous, being very poorly wetted by their own melt at the triple point. We present extensive simulations for NaCl, followed by calculations of the solid-vapor, solid-liquid, and liquid-vapor free energies showing that solid NaCl(100) is a nonmelting surface, and that its full behavior can quantitatively be accounted for within a simple Born-Meyer-Huggins-Fumi-Tosi model potential. The incomplete wetting is traced to the conspiracy of three factors: surface anharmonicities stabilizing the solid surface; a large density jump causing bad liquid-solid adhesion; incipient NaCl molecular correlations destabilizing the liquid surface. The latter is pursued in detail, and it is shown that surface short-range charge order acts to raise the surface tension because incipient NaCl molecular formation anomalously reduces the surface entropy of liquid NaCl much below that of solid NaCl(100).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA