Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 771: 144770, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33736187

RESUMO

Winter cover crops are sown in between main spring crops (e.g. cash and forage crops) to provide a range of benefits, including the reduction of nitrogen (N) leaching losses to groundwater. However, the extent by which winter cover crops will remain effective under future climate change is unclear. We assess variability and uncertainty of climate change effects on the reduction of N leaching by winter oat cover crops. Field data were collected to quantify ranges of cover crop above-ground biomass (7 to 10 t DM/ha) and N uptake (70 to 180 kg N/ha) under contrasting initial soil conditions. The data were also used to evaluate the APSIM-NextGen model (R2 from 62 to 96% and RMSEr from 7 to 50%), which was then applied to simulate cover crop and fallow conditions across four key agricultural locations in New Zealand, under baseline and future climate scenarios. Cover crops reduced N leaching risks for all location/scenario combinations but with large variability in space and time (e.g. 21 to 47% of fallow) depending on the climate change scenario. For instance, end-of-century estimates for northern (warmer) locations mostly showed non-significant effects of climate change on cover crop effectiveness and N leaching. In contrast for southern (colder) locations, there was a systematic increase in N leaching risks with climate change intensity despite a concomitant, but less than proportional, increase in cover crop effectiveness (up to ~5% of baseline) due to higher winter yields and N uptake. This implies that climate change may not only modify the geography of N leaching hotspots, but also the extent by which cover crops can locally reduce pollution risks, in some cases requiring complementary adaptive measures. The patchy- and threshold-nature of leaching events indicates that fine spatio-temporal resolutions are better suited to evaluate cover crop effectiveness under climate change.


Assuntos
Mudança Climática , Produtos Agrícolas , Agricultura , Nova Zelândia , Nitrogênio , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA