Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale Adv ; 6(19): 4831-4841, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39323420

RESUMO

Gold nanorods with small dimensions demonstrate better cellular uptake and absorption efficiency. The ability to synthesize gold nanorods while maintaining a tunable high aspect ratio is challenging as it requires careful control of reaction conditions, often employing additional steps such as pH modification or the use of polymeric additives. We demonstrate a seedless approach for the synthesis of mini (width < 10 nm) gold nanorods with tunable longitudinal surface plasmon resonance from ∼700 nm to >1000 nm and aspect ratios ranging from ∼3 to ∼7 without the use of any polymeric additives or pH modification. A single mild reducing agent, hydroquinone, allowed for up to ∼98% reaction yield from a gold precursor. A mechanism for elongation is proposed based on partial silver decoupling from the reaction. Finally, the particles were coated with various capping agents to allow functionalization and conjugation of mTHPC drug molecules, which are used in photodynamic treatments, and cytotoxic CTAB was removed to increase their biocompatibility.

2.
ACS Omega ; 9(33): 35526-35536, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39184479

RESUMO

The use of plasmonic particles, specifically, localized surface plasmonic resonance (LSPR), may lead to a significant improvement in the electrical, electrochemical, and optical properties of materials. Chemical modification of the dielectric constant near the plasmonic surface should lead to a shift of the optical resonance and, therefore, the basis for color tuning and sensing. In this research, we investigated the variation of the LSPR by modifying the chemical environment of Ag nanoparticles (NPs) through the complexation of Pt(IV) metal cations near the plasmonic surface. This study is carried out by measuring the shift of the plasmon dipole resonance of Ag nanocubes (NCs) and nanowires (NWs) of differing sizes upon coating the Ag surface with a layer of polydopamine (PDA) as a coordinating matrix for Pt(IV) complexes. The red shift of up to 45 nm depends linearly on the thickness of the PDA/Pt(IV) layer and the Pt(IV) content. Additionally, we calculated the dielectric constant of the surrounding medium using a numerical method.

3.
Langmuir ; 39(48): 17420-17426, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37988626

RESUMO

Nanoparticles with unique shapes and structures have attracted significant attention due to their distinctive properties and potential applications, but their growth mechanism is often overlooked. Hexagonal palladium nanosheets (HPNS) were synthesized through a CO-mediated reduction approach. Herein, we investigate the kinetics of the HPNS formation and modify the experimental conditions consistently by changing the carbon monoxide (CO) precursor, temperature, and stirring speed. The CO precursor plays a major role in HPNS formation with an emphasis on the kinetics of the release of CO in the solution. Slow-release and atmosphere CO precursors resulted in the highest shape yield of HPNS relative to tetrahedrons, while the fast-release CO precursor leads to the formation of a higher percentage of tetrahedrons. Additionally, an increase of the addition temperature of the CO precursor and a higher stirring rate were found to improve the shape yield of the HPNS, leading to an optimized synthetic strategy of the HPNS at high shape yield. Kinetics of the reaction with a slow-release CO precursor provided insights into the formation mechanism of the HPNS and suggested an aggregative model with an interplay between reduction kinetics and the thermodynamic stability of HPNS relative to the tetrahedrons.

4.
ACS Appl Mater Interfaces ; 13(49): 58827-58837, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34851602

RESUMO

Catalyst poisoning is a prominent issue, reducing the lifetime of catalysts and increasing the costs of the processes that rely on them. The electrocatalysts that enable green energy conversion and storage, such as proton exchange membrane fuel cells and hydrogen bromine redox flow batteries, also suffer from this issue, hindering their utilization. Current solutions to protect electrocatalysts from harmful species fall short of effective selectivity without inhibiting the required reactions. This article describes the protection of a standard 50% Pt/C catalyst with a V2O5 coating through atomic layer deposition (ALD). The ALD selectively deposited V2O5 on the Pt, which enhanced hydrogen transport to the Pt surface and resulted in a higher mass activity in alkaline electrolytes. Cyclic voltammetry and X-ray photoelectron spectroscopy showed that the Pt was protected by the coating in the HBr/Br2 electrolyte which dissolved the uncoated 50% Pt/C in under 3 min.

5.
ACS Appl Mater Interfaces ; 13(51): 61733-61741, 2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-34904822

RESUMO

Owing to its high energy density, LiNi0.8Co0.1Mn0.1O2 (NMC811) is a cathode material of prime interest for electric vehicle battery manufacturers. However, NMC811 suffers from several irreversible parasitic reactions that lead to severe capacity fading and impedance buildup during prolonged cycling. Thin surface protection films coated on the cathode material mitigate degradative chemomechanical reactions at the electrode-electrolyte interphase, which helps to increase cycling stability. However, these coatings may impede the diffusion of lithium ions, and therefore, limit the performance of the cathode material at a high C-rate. Herein, we report on the synthesis of zirconium phosphate (ZrxPOy) and lithium-containing zirconium phosphate (LixZryPOz) coatings as artificial cathode-electrolyte interphases (ACEIs) on NMC811 using the atomic layer deposition technique. Upon prolonged cycling, the ZrxPOy- and LixZryPOz-coated NMC811 samples show 36.4 and 49.4% enhanced capacity retention, respectively, compared with the uncoated NMC811. Moreover, the addition of Li ions to the LixZryPOz coating enhances the rate performance and initial discharge capacity in comparison to the ZrxPOy-coated and uncoated samples. Using online electrochemical mass spectroscopy, we show that the coated ACEIs largely suppress the degradative parasitic side reactions observed with the uncoated NMC811 sample. Our study demonstrates that providing extra lithium to the ACEI layer improves the cycling stability of the NMC811 cathode material without sacrificing its rate capability performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA