Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Adv Mater ; : e2412761, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39394825

RESUMO

Here the utility and potential of an emitter design are demonstrated, consisting of a narrowband-emitting multiresonant thermally activated delayed fluorescent (MR-TADF) core that is decorated with a suitably higher energy donor-acceptor TADF moiety. Not only does this D-A TADF group offer additional channels for triplet exciton harvesting and confers faster reverse intersystem crossing (RISC) kinetics but it also acts as a steric shield, insulating the emissive MR-TADF core from aggregation-caused quenching. Two emitters, DtCzBN-CNBT1 and DtCzBN-CNBT2, demonstrate enhanced photophysical properties leading to outstanding performance of the organic light-emitting diodes (OLEDs). DtCzBN-CNBT2, containing a D-A TADF moiety, has a faster kRISC (1.1 × 105 s-1) and higher photoluminescence quantum yield (ΦPL: 97%) compared to DtCzBN-CNBT1 (0.2 × 105 s-1, ΦPL: 90%), which contains a D-A moiety that itself is not TADF. The sensitizer-free OLEDs with DtCzBN-CNBT2 achieve a record-high maximum external quantum efficiency (EQEmax) of 40.2% and showed milder efficiency roll-off (EQE1000 of 20.7%) compared to the DtCzBN-CNBT1-based devices (EQEmax of 37.1% and EQE1000 of 11.9%).

2.
Chem Sci ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39397824

RESUMO

Creating (room temperature) liquid crystalline TADF materials that retain the photophysical properties of the monomolecular TADF emitters remains a formidable challenge. The strong intramolecular interactions required for formation of a liquid crystal usually adversely affect the photophysical properties and balancing them is not yet possible. In this work, we present a novel host-guest approach enabling unperturbed, narrowband emission from an MR-TADF emissive core from strongly aggregated columnar hexagonal (Colh) liquid crystals. By modifying the DOBNA scaffold with mesogenic groups bearing alkoxy chains of different lengths, we created a library of Colh liquid crystals featuring phase ranges >100 K and room temperature mesomorphism. Expectedly, these exhibit broad excimer emission from their neat films, so we exploited their high singlet (S1 ∼2.9 eV) and triplet (T1 ∼2.5 eV) energies by doping them with the MR-TADF guest BCzBN. Upon excitation of the host, efficient Förster Resonance Energy Transfer (FRET) resulted in almost exclusive emission from BCzBN. The ability of the liquid crystallinity of the host to not be adversely affected by the presence of BCzBN is demonstrated as is the localization of the guest molecules within the aliphatic chain network of the host, resulting in extremely narrowband emission (FWHM = 14-15 nm). With this work we demonstrate a strategy for the self-assembly of materials with previously mutually incompatible properties in emissive liquid crystalline systems: strong aggregation in Colh mesophases, and narrowband emission from a MR-TADF core.

3.
Chem Sci ; 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39328198

RESUMO

Chiral multiresonant thermally activated delayed fluorescence (MR-TADF) materials show great potential as emitters in circularly polarized (CP) organic light-emitting diodes (CP-OLEDs) owing to their bright and narrowband CP emission. Here, two new chiral MR-TADF emitters tBuPh-BN and DPA-tBuPh-BN possessing intrinsically helical chirality have been synthesized and studied. The large steric interactions between the tert-butylphenyl groups not only induce the helical chirality but also provide a notable configurational stability to the enantiomers. Racemic mixtures of tBuPh-BN and DPA-tBuPh-BN show narrowband emission at 490 and 477 nm with full-width at half maximum (FWHM) of 25 and 28 nm and photoluminescence quantum yields, Φ PL, of 85 and 54% in toluene. The separated enantiomers of tBuPh-BN and DPA-tBuPh-BN show symmetric circularly polarized luminescence (CPL) with respective dissymmetry factors |g PL| values of 1.5 × 10-3 and 0.9 × 10-3. The hyperfluorescence organic light-emitting diodes (HF-OLEDs) with tBuPh-BN and DPA-tBuPh-BN acting as terminal emitters and 2,3,4,5,6-penta-(9H-carbazol-9-yl)benzonitrile (5CzBN) as their assistant dopant exhibited, respectively, maximum external quantum efficiencies (EQEmax) of 20.9 and 15.9% at 492 and 480 nm with FWHM of 34 and 38 nm. This work demonstrates a strategy for developing intrinsically helically chiral MR-TADF emitters possessing significant configurational stability, which can be used in HF-OLEDs.

4.
J Phys Chem C Nanomater Interfaces ; 128(34): 14429-14441, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39238898

RESUMO

Thermally activated delayed fluorescence (TADF) compounds are highly attractive as sensitizing and emitting materials for organic light-emitting diodes (OLEDs). The efficiency of the OLED depends on multiple parameters, most of which rely on the properties of the emitter including those that govern the internal quantum and outcoupling efficiencies. Herein, we investigate a series of aryl substituted acridine donor derivatives of the donor-acceptor TADF emitter DMAC-TRZ, with the objective of correlating their properties, such as triplet harvesting efficiency and transition dipole moment orientation, with their corresponding device efficiency. The decoration of the DMAC donor with substituted aryl groups not only modifies the molecular weight and length of the emitter but also affects the emission color and the capacity for the emitters to efficiently harvest triplet excitons. The presence of electron-withdrawing 4-cyanophenyl and 4-trifluoromethylphenyl groups in, respectively, CNPh-DMAC-TRZ and CF3Ph-DMAC-TRZ, blue-shifts the emission spectrum but slows down the reverse intersystem crossing rate constant (k RISC), while the opposite occurs in the presence of electron-donating groups in t BuPh-DMAC-TRZ and OMePh-DMAC-TRZ (red-shifted emission spectrum and faster k RISC). In contrast to our expectations, the OLED performance of the five DMAC-TRZ derivatives does not scale with their degree of horizontal emitter orientation but follows the k RISC rates. This, in turn, demonstrates that triplet harvesting (and not horizontal emitter orientation) is the dominant effect for device efficiency using this family of emitters. Nonetheless, highly efficient OLEDs were fabricated with t BuPh-DMAC-TRZ and OMePh-DMAC-TRZ as emitters, with improved EQEmax (∼28%) compared to the reference DMAC-TRZ devices.

5.
Phys Chem Chem Phys ; 26(32): 21337-21341, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39102008

RESUMO

Two novel deep-blue multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters, 1B-CzCrs and 2B-CzCrs, containing a fused carbazole unit were synthesized. The carbazole contributed to the emergence of TADF in these small molecules. Particularly, organic light-emitting diodes with 1B-CzCrs doped in the mCP host achieve a maximum external quantum efficiency of 12.8% at CIE coordinates of (0.146, 0.062).

6.
Inorg Chem ; 63(32): 14811-14815, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39088793

RESUMO

We report square planar mononuclear Pt(II)-complexes of terpyridines in the form of [PtCl(L1/L2)]PF6 as phosphorescent emitters (where L1 = 4-(3-pyridine)2,2':6',2''-terpyridine and L2 = 4'-(3-pyridinyl)-4,4''-di(tert-butyl)-2,2':6'2''-terpyridine). Complex 2 showed emission at 534 nm in the DCM solution with photoluminescence quantum efficiency (ΦPL) = 14%, while in the mCBP host (5-wt % doped), the emission shifted to 584 nm with ΦPL = 37.8% and a phosphorescence lifetime (τphos) of 37.8 µs. Complex 2 in mCBP was used to fabricate a solution-processed phosphorescent organic light-emitting diode (PhOLED) which showed maximum external quantum efficiency (EQEmax) = 7.4% with yellow emission at λEL = 570 nm and exhibited a low efficiency roll-off with an EQE drop to 7.0% at 1000 cd/m2.

7.
Nat Commun ; 15(1): 7439, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39198389

RESUMO

Dual emission from thermally activated delayed fluorescence (TADF) emitters is often difficult to observe, especially in solution, limited by Kasha's rule. Two TADF dendrimers containing N-doped polycyclic aromatic hydrocarbons as acceptors are designed and synthesized. Compound 2GCzBPN, having a strongly twisted geometry, exhibits TADF, while 2GCzBPPZ, possessing a less twisted geometry, shows dual emission associated with the monomer and aggregate that is TADF. The demonstration reveals that 2GCzBPPZ can serve as a temperature sensor with excellent temperature sensitivity and remarkably wide emission color response in solution. By embedding 2GCzBPPZ in paraffin we demonstrate a spatial-temperature sensor that shows a noticeable emission shift from yellow to green and ultimately to blue as the temperature increases from 20 to 200 °C. We finally demonstrate the utility of these TADF dendrimers in solution-processed organic light-emitting diodes.

8.
Chemistry ; 30(55): e202401263, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949777

RESUMO

A series of fluorescent carbazole-coumarins exhibiting good photoluminescence quantum yields and thermally activated delayed fluorescence (TADF) properties have been designed and synthetized using computer-aided density functional theory calculations. The TADF characteristics of the carbazole-coumarins were systematically explored both in solution and in the solid state, utilizing poly(methyl methacrylate) (PMMA) as a matrix. The study revealed that the introduction of carbazole units onto the coumarin benzene ring led to compounds with thermally induced reverse intersystem crossing and delayed fluorescence. The study further demonstrated the potential utility of these compounds in practical applications by incorporating them into a Cmr-PMMA-based sensor for molecular oxygen detection. The resulting sensor exhibited promising performance, highlighting the adaptability and efficacy of the synthesized TADF-carbazole-coumarin compounds for reversible molecular oxygen sensing.

9.
Chem Sci ; 15(24): 9369-9375, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38903219

RESUMO

α-Phenylthioaldehydes are readily prepared using a simple multi-step procedure and herein are introduced as a new precursor for the NHC-catalysed generation of acyl azolium and azolium enolate intermediates that are of widespread synthetic interest and utility. Treatment of α-phenylthioaldehydes with an NHC precatalyst and base produces an efficient redox rearrangement via a Breslow intermediate, elimination of thiophenolate, and subsequent rebound addition to the generated acyl azolium to give the corresponding thiol ester. In the presence of an external alcohol, competition between redox rearrangement and redox esterification can be controlled through judicious choice of the N-aryl substituent within the NHC precatalyst and the base used in the reaction. With NEt3 as base, NHCs bearing electron-withdrawing (N-C6F5 or N-C6H2Cl3) substituents favour redox rearrangement, while triazolium precatalysts with electron-rich N-aryl substituents (N-Ph, N-Mes) result in preferential redox esterification. Using DBU, redox esterification is preferred due to transesterification of the initially formed thiol ester product. Additionally, α-phenylthioaldehyde-derived azolium enolates have been used in enantioselective formal [4 + 2]-cycloaddition reactions to access dihydropyridinone heterocycles with high enantioselectivity (up to >95 : 5 dr, 98 : 2 er).

10.
Adv Mater ; 36(33): e2402194, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38865650

RESUMO

Organic light-emitting diodes (OLEDs) that are able to emit high levels of circularly polarized (CP) light hold significant promise in numerous future technologies. Such devices require chiral emissive materials to enable CP electroluminescence. However, the vast majority of current OLED emitter classes, including the state-of-the-art triplet-harvesting thermally activated delayed fluorescence (TADF) materials, produce very low levels of CP electroluminescence. Here a host-guest strategy that allows for energy transfer between a chiral polymer host and a representative chiral TADF emitter is showcased. Such a mechanism results in a large amplification of the circular polarization of the emitter. As such, this study presents a promising avenue to further boost the performance of circularly polarized organic light-emitting diode devices, enabling their further development and eventual commercialization.

11.
Chem Commun (Camb) ; 60(33): 4459-4462, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38563754

RESUMO

Modification of an unsymmetric B,O,N-doped aromatic core with peripheral mesogenic units triggers self-assembly into a columnar hexagonal mesophase, which is stable between 22 and 144 °C. The columnar assembly is preserved in a glassy state below 22 °C. The B,O,N-doped mesogen displays narrowband sky-blue multiresonance thermally activated delayed fluorescence (MR-TADF) under diluted conditions and bright excimer emission in condensed phase. Our combined experimental and theoretical approach provides insight into the development of strongly aggregating liquid crystalline MR-TADF emitters.

12.
Adv Mater ; 36(26): e2402289, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581139

RESUMO

Narrowband emissive multiresonant thermally activated delayed fluorescence (MR-TADF) emitters are a promising solution to achieve the current industry-targeted color standard, Rec. BT.2020-2, for blue color without using optical filters, aiming for high-efficiency organic light-emitting diodes (OLEDs). However, their long triplet lifetimes, largely affected by their slow reverse intersystem crossing rates, adversely affect device stability. In this study, a helical MR-TADF emitter (f-DOABNA) is designed and synthesized. Owing to its π-delocalized structure, f-DOABNA possesses a small singlet-triplet gap, ΔEST, and displays simultaneously an exceptionally faster reverse intersystem crossing rate constant, kRISC, of up to 2 × 106 s-1 and a very high photoluminescence quantum yield, ΦPL, of over 90% in both solution and doped films. The OLED with f-DOABNA as the emitter achieved a narrow deep-blue emission at 445 nm (full width at half-maximum of 24 nm) associated with Commission Internationale de l'Éclairage (CIE) coordinates of (0.150, 0.041), and showed a high maximum external quantum efficiency, EQEmax, of ≈20%.

13.
Angew Chem Int Ed Engl ; 63(24): e202405081, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600037

RESUMO

We report a family of donor-acceptor thermally activated delayed fluorescent (TADF) compounds based on derivatives of DMAC-TRZ, that are strongly photoreducing. Both Eox and thus E*ox could be tuned via substitution of the DMAC donor with a Hammett series of p-substituted phenyl moieties while Ered remained effectively constant. These compounds were assessed in the photoinduced dehalogenation of aryl halides, and analogues bearing electron withdrawing groups were found to produce the highest yields. Substrates of up to Ered=-2.72 V could be dehalogenated at low PC loading (1 mol %) and under air, conditions much milder than previously reported for this reaction. Spectroscopic and chemical studies demonstrate that all PCs, including literature reference PCs, photodegrade, and that it is these photodegradation products that are responsible for the reactivity.

14.
Chem Sci ; 15(10): 3741-3757, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38455004

RESUMO

Herein, we show that there is significant variation in both the triplet energies and redox properties of photocatalysts as a function of solvent based on a study of eight PCs in four solvents of varying polarity. A range of photocatalytic electron and energy transfer reactions were investigated using a subset of the PCs. For the photoredox reactions, the yields are not correlated with solvent polarity. Instead, when the PC could promote the formation of the target product, we observed photodegradation for all PCs across all solvents, something that is rarely investigated in the literature. This, therefore, makes it difficult to ascertain whether the parent PC and/or the photodegraded product is responsible for the photochemistry, or indeed, whether photodegradation is actually detrimental to the reaction yield. Conversely, the PCs were found to be photostable for energy transfer reactions; however, yields were not correlated to the triplet energies of the PCs, highlighting that triplet energies alone are not a suitable descriptor to discriminate the performance between PCs in photoinduced energy transfer processes.

15.
Nat Commun ; 15(1): 1509, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374079

RESUMO

In contemporary drug discovery, enhancing the sp3-hybridized character of molecular structures is paramount, necessitating innovative synthetic methods. Herein, we introduce a deoxygenative cross-electrophile coupling technique that pairs easily accessible carboxylic acid-derived redox-active esters with aldehyde sulfonyl hydrazones, employing Eosin Y as an organophotocatalyst under visible light irradiation. This approach serves as a versatile, metal-free C(sp3)-C(sp3) cross-coupling platform. We demonstrate its synthetic value as a safer, broadly applicable C1 homologation of carboxylic acids, offering an alternative to the traditional Arndt-Eistert reaction. Additionally, our method provides direct access to cyclic and acyclic ß-arylethylamines using diverse aldehyde-derived sulfonyl hydrazones. Notably, the methodology proves to be compatible with the late-stage functionalization of peptides on solid-phase, streamlining the modification of intricate peptides without the need for exhaustive de-novo synthesis.

16.
J Phys Chem C Nanomater Interfaces ; 128(3): 1122-1130, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38293694

RESUMO

In this study, we explore the impact of halogen functionalization on the photophysical properties of the commonly used organic light-emitting diode (OLED) host material, 1,3-bis(N-carbazolyl)benzene (mCP). Derivatives with different numbers and types of halogen substituents on mCP were synthesized. By measuring steady-state and transient photoluminescence at 6 K, we study the impact of the type, number, and position of the halogens on the intersystem crossing and phosphorescence rates of the compounds. In particular, the functionalization of mCP with 5 bromine atoms results in a significant increase of the intersystem crossing rate by a factor of 300 to a value of (1.5 ± 0.1) × 1010 s-1, and the phosphorescence rate increases by 2 orders of magnitude. We find that the singlet radiative decay rate is not significantly modified in any of the studied compounds. In the second part of the paper, we describe the influence of these compounds on the reverse intersystem crossing of the 7,10-bis(4-(diphenylamino)phenyl)-2,3-dicyanopyrazino-phenanthrene (TPA-DCPP), a TADF guest, via the external heavy atom effect. Their use results in an increase of the reverse intersystem crossing (RISC) rate from (8.1 ± 0.8) × 103 s-1 for mCP to (2.7 ± 0.1) × 104 s-1 for mCP with 5 bromine atoms. The effect is even more pronounced for the mCP analogue containing a single iodine atom, which gives a RISC rate of (3.3 ± 0.1) × 104 s-1. Time-dependent DFT calculations reveal the importance of the use of long-range corrected functionals to predict the effect of halogenation on the optical properties of the mCP, and the relativistic approximation (ZORA) is used to provide insight into the strength of the spin-orbit coupling matrix element between the lowest-lying excited singlet and triplet states in the different mCP compounds.

17.
Chem Commun (Camb) ; 60(18): 2489-2492, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38196344

RESUMO

Herein, we report a fluorene-bridged double carbonyl/amine-based MR TADF emitter DDiKTa-F, formed by locking the conformation of the previously reported compound DDiKTa. Using this strategy, DDiKTa-F exhibited narrower, brighter, and red-shifted emission. The OLEDs with DDiKTa-F emitted at 493 nm and showed an EQEmax of 15.3% with an efficiency roll-off of 35% at 100 cd m-2.

18.
Chem Sci ; 15(2): 545-554, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38179537

RESUMO

Organic small molecules exhibiting both thermally activated delayed fluorescence (TADF) and wide-ranging piezochromism (Δλ > 150 nm) in the near-infrared region have rarely been reported in the literature. We present three emitters MeTPA-BQ, tBuTPA-BQ and TPPA-BQ based on a hybrid acceptor, benzo[g]quinoxaline-5,10-dione, that emit via TADF, having photoluminescence quantum yields, ΦPL, of 39-42% at photoluminescence (PL) maxima, λPL, of 625-670 nm in 2 wt% doped films in 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP). Despite their similar chemical structures, the PL properties in the crystalline states of MeTPA-BQ (λem = 735 nm, ΦPL = 2%) and tBuTPA-BQ (λem = 657 nm, ΦPL = 11%) are significantly different. Further, compounds tBuTPA-BQ and TPPA-BQ showed a significant PL shift of ∼98 and ∼165 nm upon grinding of the crystalline samples, respectively. Deep-red organic light-emitting diodes with MeTPA-BQ and tBuTPA-BQ were also fabricated, which showed maximum external quantum efficiencies, EQEmax, of 10.1% (λEL = 650 nm) and 8.5% (λEL = 670 nm), respectively.

19.
J Phys Chem Lett ; 15(4): 1034-1047, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38259039

RESUMO

OLED technology has revolutionized the display industry and is promising for lighting. Despite its maturity, there remain outstanding device and materials challenges to address. Particularly, achieving stable and highly efficient blue OLEDs is still proving to be difficult; the vast array of degradation mechanisms at play, coupled with the precise balance of device parameters needed for blue high-performance OLEDs, creates a unique set of challenges in the quest for a suitably stable yet high-performance device. Here, we discuss recent progress in the understanding of device degradation pathways and provide an overview of possible strategies to increase device lifetimes without a significant efficiency trade-off. Only careful consideration of all variables that go into OLED development, from the choice of materials to a deep understanding of which degradation mechanisms need to be suppressed for the particular structure, can lead to a meaningful positive change toward commercializable blue devices.

20.
Angew Chem Int Ed Engl ; 63(13): e202316169, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38263796

RESUMO

This proof-of-concept study cements the viability and generality of mechanophotocatalysis, merging mechanochemistry and photocatalysis to enable solvent-minimized photocatalytic reactions. We demonstrate the transmutation of four archetypal solution-state photocatalysis reactions to a solvent-minimized environment driven by the combined actions of milling, light, and photocatalysts. The chlorosulfonylation of alkenes and the pinacol coupling of aldehydes and ketones were conducted under solvent-free conditions with competitive or superior efficiencies to their solution-state analogues. Furthermore, decarboxylative alkylations are shown to function efficiently under solvent-minimized conditions, while the photoinduced energy transfer promoted [2+2] cycloaddition of chalcone experiences a significant initial rate enhancement over its solution-state variant. This work serves as a platform for future discoveries in an underexplored field: validating that solvent-minimized photocatalysis is not only generalizable and competitive with solution-state photocatalysis, but can also offer valuable advantages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA