Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38215243

RESUMO

Aim: ChiTn, a mouse/human chimeric anti-Tn monoclonal antibody, was radiolabeled with iodine-131 (131I) and technetium-99m (99mTc) to assess its biodistribution and internalization in Tn-expressing (Tn+) and wild-type (Tn-) LL/2 lung cancer cells. Results: Selective accumulation and gradual internalization of ChiTn were observed in Tn+ cells. Biodistribution in mice with both Tn+ or Tn- lung tumors indicated that the uptake of radiolabeled ChiTn within tumors increased over time. Dual-labeling experiments with 99mTc and 131I showed different biodistribution patterns, with 99mTc exhibiting higher values in the liver, spleen, and kidneys, while 131I showed higher uptake in the thyroid and stomach. However, tumor uptake did not significantly differ between Tn+ and Tn- tumors. To improve tumor targeting, Losartan, an antihypertensive drug known to enhance tumor perfusion and drug delivery, was investigated. Biodistribution studies in Losartan-treated mice revealed significantly higher radiolabeled ChiTn uptake in Tn+ tumors. No significant changes were observed in the uptake of the control molecule IgG-HYNIC-99mTc. Conclusions: These findings demonstrate the enhanced tumor targeting of radiolabeled ChiTn in Losartan-treated mice with Tn-expressing lung tumors. They highlight the potential of ChiTn as a theranostic agent for cancer treatment and emphasize the importance of Losartan as an adjunctive treatment to improve tumor perfusion and drug delivery.

2.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499361

RESUMO

Lung cancer remains the leading cause of cancer mortality worldwide. Thus, the development of strategies against this type of cancer is of high value. Parasite infections can correlate with lower cancer incidence in humans and their use as vaccines has been recently explored in preclinical models. In this study, we investigated whether immunisations with a Trypanosoma cruzi lysate from epimastigotes protect from lung tumour growth in mice. We also explore the role of parasite glycans in the induction of the protective immune response. A pre-clinical murine cancer model using the lung tumour cell line LL/2 was used to evaluate the anti-tumour potential, both in preventive and therapeutic settings, of a T. cruzi epimastigote-derived protein lysate. Immunisation with the parasite lysate prevents tumour growth and induces both humoral and cellular anti-tumour immune responses to LL-2 cancer cells. The induced immunity and tumour protection were associated with the activation of natural killer (NK) cells, the production of interferon-γ (IFN-γ) and tumour cell cytotoxicity. We also show that mannose residues in the T. cruzi lysate induce Toll-like receptor (TLR) signalling. The evaluated T. cruzi lysate possesses anti-tumour properties likely by activating innate and adaptive immunity in a process where carbohydrates seem to be essential.


Assuntos
Doença de Chagas , Neoplasias , Trypanosoma cruzi , Humanos , Camundongos , Animais , Interferon gama , Células Matadoras Naturais , Imunidade Adaptativa
3.
Sci Rep ; 12(1): 17661, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271272

RESUMO

Fasciola hepatica, one of the agents that causes fasciolosis, modulates the host immune system to allow parasite survival in the host. F. hepatica expresses carbohydrate-containing glycoconjugates that are decoded by C-type lectin receptors, such as Dectin-1, mannose receptor, DC-SIGN and MGL, that are mainly present on myeloid antigen presenting cells (APCs) and can mediate immunoregulatory properties on T cells. In particular, Macrophage Gal/GalNAc lectin 2 (MGL2) expands modified Th2 immune responses, while suppressing Th1 polarization, upon recognition of GalNAc-glycosylated parasite components. In this study, by using MGL2-DTR transgenic mice that encode human diphtheria toxin receptor in MGL2+ cells, we demonstrate the role of peritoneal APCs during F. hepatica infection in favoring parasite survival. This process might be mediated by the induction of splenic Tregs in vivo, since the depletion of MGL2+ cells conferred mice with partial resistance to the infection and abrogated the increase of CD4+/CD25+ FoxP3+ Tregs induced by the parasite. Therefore, MGL2+ cells are critical determinants of F. hepatica infection and could constitute immune checkpoints to control parasite infection.


Assuntos
Fasciola hepatica , Fasciolíase , Humanos , Camundongos , Animais , Fator de Crescimento Semelhante a EGF de Ligação à Heparina , Linfócitos T Reguladores , Fasciolíase/parasitologia , Lectinas Tipo C/genética , Células Apresentadoras de Antígenos , Glicoconjugados , Macrófagos , Fatores de Transcrição Forkhead
4.
Exp Parasitol ; 238: 108285, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35654132

RESUMO

Fasciola hepatica, a worldwide-distributed liver fluke, is one of the causative agents of fasciolosis, a zoonotic disease that affects livestock and humans. In livestock, fasciolosis causes huge economic losses worldwide, reducing animal fertility, milk production, weight gain and condemnation of livers. In spite of the availability of drugs, such as triclabendazole (TCZ), for the treatment of fasciolosis, they do not necessarily prevent liver damage or parasite reinfection and can eventually increase parasite resistance. The aim of this research was to relate the hepatic function, haematological parameters, leukocyte counts in circulation and parasite egg shedding during F. hepatica acute and chronic phases of infection in cattle as well as to determine how these parameters change with TCZ-treatment of chronically infected cattle. Our results show that increased levels of serum aspartate aminotransferase (AST) and gamma glutamyltransferase (GGT) were detected in early stages of the experimental infection. Moreover, high circulating eosinophil count and plateletcrit levels were correlated with fluke number in livers from infected cattle. On the other hand, although TCZ-treatment in the chronic phase of infection reduced parasite burden and damage in the liver, it was not able to completely avoid them. In conclusion, our work sheds light into the physiopathological mechanisms induced during fluke infection in cattle, revealing the complexity of the host response to the infection, together with the effects of TCZ-treatment in chronically infected animals.


Assuntos
Doenças dos Bovinos , Fasciola hepatica , Fasciolíase , Animais , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/parasitologia , Fasciolíase/tratamento farmacológico , Fasciolíase/parasitologia , Fasciolíase/veterinária , Triclabendazol/uso terapêutico
5.
Cancers (Basel) ; 14(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35454762

RESUMO

Aberrant glycosylation in tumour progression is currently a topic of main interest. Tumour-associated carbohydrate antigens (TACAs) are expressed in a wide variety of epithelial cancers, being both a diagnostic tool and a potential treatment target, as they have impact on patient outcome and disease progression. Glycans affect both tumour-cell biology properties as well as the antitumor immune response. It has been ascertained that TACAs affect cell migration, invasion and metastatic properties both when expressed by cancer cells or by their extracellular vesicles. On the other hand, tumour-associated glycans recognized by C-type lectin receptors in immune cells possess immunomodulatory properties which enable tumour growth and immune response evasion. Yet, much remains unknown, concerning mechanisms involved in deregulation of glycan synthesis and how this affects cell biology on a major level. This review summarises the main findings to date concerning how aberrant glycans influence tumour growth and immunity, their application in cancer treatment and spotlights of unanswered challenges remaining to be solved.

6.
Glycobiology ; 32(5): 366-379, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-34939098

RESUMO

Cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths. Among breast cancers (BC) subtypes, triple-negative (TN) BC is characterized by metastatic progression and poor patient prognosis. Although, TNBC is initially sensitive to chemotherapy, many TNBC patients rapidly develop resistance, at which point metastatic disease is highly lethal. Cancer cells present phenotypic changes or molecular signatures that distinguish them from healthy cells. The Tn antigen (GalNAc-O-Thr/Ser), which constitutes a powerful tool as tumor marker, was recently reported to contribute to tumor growth. However, its role in BC-derived metastasis has not yet been addressed. In this work, we generated a pre-clinical orthotopic Tn+ model of metastatic TNBC, which mimics the patient surgical treatment and is useful to study the role of Tn in metastasis and immunoregulation. We obtained two different cell clones, which differed in their Tn antigen expression: a high Tn-expressing and a non-expressing clone. Interestingly, the Tn-positive cell line generated significantly larger tumors and higher degree of lung metastases associated with a lower survival rate than the Tn-negative and parental cell line. Furthermore, we also found that both tumors and draining-lymph nodes from Tn+-tumor-bearing mice presented a higher frequency of CD4+ FoxP3+ T cells, while their splenocytes expressed higher levels of IL-10. In conclusion, this work suggests that the Tn antigen participates in breast tumor growth and spreading, favoring metastases to the lungs that are associated with an immunoregulatory state, suggesting that Tn-based immunotherapy could be a strategy of choice to treat these tumors.


Assuntos
Neoplasias Pulmonares , Neoplasias de Mama Triplo Negativas , Animais , Antígenos Glicosídicos Associados a Tumores , Linhagem Celular Tumoral , Humanos , Camundongos , Prognóstico , Linfócitos T Reguladores , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
7.
Antioxidants (Basel) ; 10(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34943041

RESUMO

Fasciola hepatica is a fluke that infects livestock and humans causing fasciolosis, a zoonotic disease of increasing importance due to its worldwide distribution and high economic losses. The parasite regulates the host immune system by inducing a strong Th2 and regulatory T (Treg) cell immune response through mechanisms that might involve the expression or activity of heme-oxygenase-1 (HO-1), the rate-limiting enzyme in the catabolism of free heme that also has immunoregulatory and antioxidant properties. In this paper, we show that F. hepatica-infected mice upregulate HO-1 on peritoneal antigen-presenting cells (APC), which produce decreased levels of both reactive oxygen and nitrogen species (ROS/RNS). The presence of these cells was associated with increased levels of regulatory T cells (Tregs). Blocking the IL-10 receptor (IL-10R) during parasite infection demonstrated that the presence of splenic Tregs and peritoneal APC expressing HO-1 were both dependent on IL-10 activity. Furthermore, IL-10R neutralization as well as pharmacological treatment with the HO-1 inhibitor SnPP protected mice from parasite infection and allowed peritoneal APC to produce significantly higher ROS/RNS levels than those detected in cells from infected control mice. Finally, parasite infection carried out in gp91phox knockout mice with inactive NADPH oxidase was associated with decreased levels of peritoneal HO-1+ cells and splenic Tregs, and partially protected mice from the hepatic damage induced by the parasite, revealing the complexity of the molecular mechanisms involving ROS production that participate in the complex pathology induced by this helminth. Altogether, these results contribute to the elucidation of the immunoregulatory and antioxidant role of HO-1 induced by F. hepatica in the host, providing alternative checkpoints that might control fasciolosis.

8.
Cancer Lett ; 518: 72-81, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34144098

RESUMO

Tn is a tumor-associated carbohydrate antigen that constitutes both a diagnostic tool and an immunotherapeutic target. It originates from interruption of the mucin O-glycosylation pathway through defects involving, at least in part, alterations in core-1 synthase activity, which is highly dependent on Cosmc, a folding chaperone. Tn antigen is recognized by the Macrophage Galactose-type Lectin (MGL), a C-type lectin receptor present on dendritic cells and macrophages. Specific interactions between Tn and MGL shape anti-tumoral immune responses by regulating several innate and adaptive immune cell programs. In this work, we generated and characterized a variant of the lung cancer murine cell line LL/2 that expresses Tn by mutation of the Cosmc chaperone gene (Tn+ LL/2). We confirmed Tn expression by lectin glycophenotyping and specific anti-Tn antibodies, verified abrogation of T-synthase activity in these cells, and confirmed its recognition by the murine MGL2 receptor. Interestingly, Tn+ LL/2 cells were more aggressive in vivo, resulting in larger and highly vascularized tumors than those generated from wild type Tn- LL/2 cells. In addition, Tn+ tumors exhibited an increase in CD11c+ F4/80+ cells with high expression of MGL2, together with an augmented expression of IL-10 in infiltrating CD4+ and CD8+ T cells. Importantly, this immunosuppressive microenvironment was dependent on the presence of MGL2+ cells, since depletion of these cells abrogated tumor growth, vascularization and recruitment of IL-10+ T cells. Altogether, our results suggest that expression of Tn in tumor cells and its interaction with MGL2-expressing CD11c+F4/80+ cells promote immunosuppression and angiogenesis, thus favoring tumor progression.


Assuntos
Antígenos Glicosídicos Associados a Tumores/imunologia , Galactose/imunologia , Lectinas Tipo C/imunologia , Neoplasias Pulmonares/imunologia , Macrófagos/imunologia , Neovascularização Patológica/imunologia , Animais , Antígeno CD11c/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Feminino , Terapia de Imunossupressão/métodos , Interleucina-10/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral/imunologia
9.
Front Immunol ; 11: 579801, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042162

RESUMO

Eosinophils are granulocytes that participate in the defense against helminth parasites and in hypersensitivity reactions. More recently, eosinophils were shown to have other immunomodulatory functions, such as tissue reparation, metabolism regulation, and suppression of Th1 and Th17 immune responses. In the context of parasitic helminth infections, eosinophils have a controversial role, as they can be beneficial or detrimental for the host. In this work, we investigate the role of eosinophils in an experimental infection in mice with the trematode parasite Fasciola hepatica, which causes substantial economical losses around the world due to the infection of livestock. We demonstrate that eosinophils are recruited to the peritoneal cavity and liver from F. hepatica-infected mice and this recruitment is associated with increased levels of CCL11, TSLP, and IL-5. Moreover, the characterization of peritoneal and hepatic eosinophils from F. hepatica-infected mice showed that they express distinctive molecules of activation and cell migration. Depletion of eosinophils with an anti-Siglec-F antibody provoked more severe clinical signs and increased liver damage than control animals which were accompanied by an increase in the production of IL-10 by hepatic and splenic CD4+ T cells. In addition, we also report that eosinophils participate in the modulation of humoral immune responses during F. hepatica infection, contributing to their degranulation. In conclusion, we demonstrate that eosinophils are beneficial for the host during F. hepatica infection, by limiting the production of IL-10 by specific CD4+ T cells and favoring eosinophil degranulation induced by specific antibodies. This work contributes to a better understanding of the role of eosinophils in parasitic helminth infections.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Eosinófilos/imunologia , Fasciola hepatica/fisiologia , Fasciolíase/imunologia , Fígado/patologia , Animais , Citotoxicidade Celular Dependente de Anticorpos , Degranulação Celular , Células Cultivadas , Quimiocina CCL11/metabolismo , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Patógeno , Humanos , Imunomodulação , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ovinos , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia
10.
Front Immunol ; 8: 883, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28798750

RESUMO

Fasciola hepatica, also known as the liver fluke, is a trematode that infects livestock and humans causing fasciolosis, a zoonotic disease of increasing importance due to its worldwide distribution and high economic losses. This parasite immunoregulates the host immune system by inducing a strong Th2 and regulatory T immune response by immunomodulating dendritic cell (DC) maturation and alternative activation of macrophages. In this paper, we show that F. hepatica infection in mice induces the upregulation of heme-oxygenase-1 (HO-1), the rate-limiting enzyme in the catabolism of free heme that regulates the host inflammatory response. We show and characterize two different populations of antigen presenting cells that express HO-1 during infection in the peritoneum of infected animals. Cells that expressed high levels of HO-1 expressed intermediate levels of F4/80 but high expression of CD11c, CD38, TGFß, and IL-10 suggesting that they correspond to regulatory DCs. On the other hand, cells expressing intermediate levels of HO-1 expressed high levels of F4/80, CD68, Ly6C, and FIZZ-1, indicating that they might correspond to alternatively activated macrophages. Furthermore, the pharmacological induction of HO-1 with the synthetic metalloporphyrin CoPP promoted F. hepatica infection increasing the clinical signs associated with the disease. In contrast, treatment with the HO-1 inhibitor SnPP protected mice from parasite infection, indicating that HO-1 plays an essential role during F. hepatica infection. Finally, HO-1 expression during F. hepatica infection was associated with TGFß and IL-10 levels in liver and peritoneum, suggesting that HO-1 controls the expression of these immunoregulatory cytokines during infection favoring parasite survival in the host. These results contribute to the elucidation of the immunoregulatory mechanisms induced by F. hepatica in the host and provide alternative checkpoints to control fasciolosis.

11.
Front Immunol ; 8: 264, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28360908

RESUMO

Fasciolosis, caused by Fasciola hepatica and Fasciola gigantica, is a trematode zoonosis of interest in public health and livestock production. Like other helminths, F. hepatica modulates the host immune response by inducing potent polarized Th2 and regulatory T cell immune responses and by downregulating the production of Th1 cytokines. In this work, we show that F. hepatica glycans increase Th2 immune responses by immunomodulating TLR-induced maturation and function of dendritic cells (DCs). This process was mediated by the macrophage Gal/GalNAc lectin (MGL) expressed on DCs, which recognizes the Tn antigen (GalNAc-Ser/Thr) on parasite components. More interestingly, we identified MGL-expressing CD11c+ cells in infected animals and showed that these cells are recruited both to the peritoneum and the liver upon F. hepatica infection. These cells express the regulatory cytokines IL-10, TNFα and TGFß and a variety of regulatory markers. Furthermore, MGL+ CD11c+ cells expand parasite-specific Th2/regulatory cells and suppress Th1 polarization. The results presented here suggest a potential role of MGL in the immunomodulation of DCs induced by F. hepatica and contribute to a better understanding of the molecular and immunoregulatory mechanisms induced by this parasite.

12.
Epigenetics ; 10(4): 329-41, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25830902

RESUMO

Werner Syndrome (WS) is a rare inherited disease characterized by premature aging and increased propensity for cancer. Mutations in the WRN gene can be of several types, including nonsense mutations, leading to a truncated protein form. WRN is a RecQ family member with both helicase and exonuclease activities, and it participates in several cell metabolic pathways, including DNA replication, DNA repair, and telomere maintenance. Here, we reported a novel homozygous WS mutation (c.3767 C > G) in 2 Argentinian brothers, which resulted in a stop codon and a truncated protein (p.S1256X). We also observed increased WRN promoter methylation in the cells of patients and decreased messenger WRN RNA (WRN mRNA) expression. Finally, we showed that the read-through of nonsense mutation pharmacologic treatment with both aminoglycosides (AGs) and ataluren (PTC-124) in these cells restores full-length protein expression and WRN functionality.


Assuntos
Metilação de DNA/efeitos dos fármacos , Epigênese Genética , Mutação , Síndrome de Werner/genética , Senilidade Prematura/genética , Aminoglicosídeos/farmacologia , Apoptose/efeitos dos fármacos , Células Cultivadas , Cromossomos Humanos/efeitos dos fármacos , Códon sem Sentido , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Feminino , Humanos , Masculino , Oxidiazóis/farmacologia , Regiões Promotoras Genéticas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Síndrome de Werner/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA